
Received August 21, 2019, accepted September 18, 2019, date of publication September 23, 2019, date of current version October 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2942962

Self-Tune Linear Adaptive-Genetic
Algorithm for Feature Selection

CHING SHENG OOI , MENG HEE LIM, AND MOHD SALMAN LEONG
Institute of Noise and Vibration, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur 54100, Malaysia

Corresponding author: Ching Sheng Ooi (chingshengooi@gmail.com)

This work was supported in part by the Institute of Noise and Vibration UTM through the Higher Institution Centre of Excellence (HICoE)

under Grant R.K130000.7809.4J226, Grant R.K130000.7809.4J227, and Grant R.K130000.7809.4J228, and in part by the UTM Research

University under Grant Q.K130000.2543.11H36.

ABSTRACT Genetic algorithm (GA) is an established machine learning technique used for heuristic

optimisation purposes. However, this natural selection-based technique is prone to premature convergence,

especially of the local optimum event. The presence of stagnant performance is due to low population

diversity and fixed genetic operator setting. Therefore, an adaptive algorithm, the Self-Tune Linear Adaptive-

GA (STLA-GA), is presented in order to avoid suboptimal solutions in feature selection case studies.

STLA-GA performs parameter tuning for mutation probability rate, population size, maximum generation

number and novel convergence threshold while simultaneously updating the stopping criteria by adopting an

exploration-exploitation cycle. The exploration-exploitation cycle embedded in STLA-GA is a function of

the latest classifier performance. Compared to standard feature selection practice, the proposed STLA-GA

delivers multi-fold benefits, including overcoming local optimum solutions, yielding higher feature subset

reduction rates, removing manual parameter tuning, eliminating premature convergence and preventing

excessive computational cost, which is due to unstable parameter tuning feedback.

INDEX TERMS Classification, exploration-exploitation cycle, feature selection, parameter tuning,

STLA-GA.

I. INTRODUCTION

Genetic Algorithm (GA) is a superior machine learning

technique inspired by Darwinism. Recent GA development

has covered a wide range of applications, such as system

identification [1], optimisation [2], [3], prognosis [4], data

classification [5], feature selection [6], and image process-

ing [7]. Nevertheless, the evolutionary searching nature of

GA provides a double-edged sword: it is proven to be useful

in executing heuristic optimisation but at the risk of premature

convergence [8]. The tendency of local optimum occurrence

is likely caused by a lack of diversity in candidate selec-

tion and static genetic operator setting. The genetic operator

consists of selection, crossover, and mutation, together with

GA stopping criteria. Moreover, the significance of tedious

parameter tuning activity is unknown not only because a

universal optimisation solution is unlikely but also due to the

exponential increases in combination number with respect to

the genetic parameters involved [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

Given the local optimum likelihood, a GA parameter tun-

ing methodology with reasonable computational cost is nec-

essary. Thus, this case study introduces an adaptive GA

feature selection technique, the Self-Tune Linear Adaptive-

GA (STLA-GA) for classification purposes. Compared to

existing parameter tuning algorithms, the uniqueness of

STLA-GA is attributed to its fitness-performance-based

adaptive nature. The ability to gradually prioritise search

space exploration or exploitation activity within the allowable

parameter range theoretically gives STLA-GA the upper hand

in terms of flexibility, optimality and stability.

In the next section, recent research developments on GA

parameter tuning are discussed. Then, a detailed explanation

for a list of feature selection methodologies and classifiers

are provided. Lastly, the performance results and optimisation

techniques on four classification datasets are examined.

II. LITERATURE REVIEW: DEVELOPMENT OF MACHINE

LEARNING PARAMETER TUNING ALGORITHM

Numerous machine learning improvement efforts have

favoured the parameter tuning algorithm over conventional
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manual tuning practice. For GA in particular, the main tar-

get of parameter tuning is to avoid premature convergence

and slow finishing. In fact, a novel Dynamic Crossover GA

(DCGA) employs multiple crossover operators instead of one

in order to generate quality offspring [10]. The proposed

adaptive mechanism reproduces the population ratio that cor-

responds to the fitness performance of respected crossover

operators. The aforementioned methodology has been further

extended into crossover and mutation probability rates with

respect to targeted search space [11]. Furthermore, the Adap-

tive Operators Evolutionary Algorithm (AOEA) has substi-

tuted static genetic operator structure with the self-adaptive

Genetic Programming (GP) tree [12]. The co-evolutionary

technique manages the selection probabilities of a group of

operators in a stepwise design until no changes arise (null

operation). In addition, the Self-Configuring GA (SCGA)

manipulates the probability value for genetic operators

concurrently with reference to fitness function [13]. The

Intuitionistic Fuzzy Logic (IFL) has been applied to the

Multi-population GA (MpGA) in a top-down fashion in order

to cross-validate the effectiveness of the genetic operators’

sequence shuffling [14].

Meanwhile, the self-tuning GA advancement can elimi-

nate GA parameter input tuning altogether. The removal of

manual parameter tuning is achieved by introducing chro-

mosome embedded evolving indicators in a closed-loop self-

adaptive system. For example, the Self-Adaptive GA (SAGA)

applies an individual-level encoder alternative to ensure that

the desired crossover and mutation probability parameters

are tuned to the uniqueness of the subjected problem state-

ment [15]. A self-tuning GA process has been developed in

order to regulate heuristic function parameters by performing

problem characterization with mathematical equations [16].

The suggested technique has produced competent results

without requiring an understanding of problem domains.

A new aggregated voting parameter approach has been pre-

sented as an extra gene in the chromosome to realize a self-

adaptive tournament size for population scale [17].Moreover,

the Bayesian belief network has been customized as an

implicit probabilistic parameter value feedback mechanism

based on fitness function performance [18]. The Bayesian

Effect Assessment (BEA) adaptively controls automotive-

related parameters by forecasting the usefulness of candi-

dates’ solutions using a novel success threshold.

On the other hand, the mutation probability rate, which

numerically indicates the Population Movement Intensity

(PMI), has been a major tuning target to accommodate the

fitness landscape andmultimodality [19]. Tomaintain genetic

diversity while increasing feature selection searching effi-

ciency, a genetic mutation operator, immigration, is invented

to allow candidates to roam between island-based subpopu-

lations [20]. Similarly, Adaptive Genetic Algorithms (AGAs)

enable desirable initial weights for neural network learning

by ensuring population variety with a simultaneous revi-

sion of crossover and mutation values [21]. Reference [22]

has explained that a diverse initial population leads to an

optimal solution for the Resource-Constrained Assembly

Line Balancing Problem (RCALBP). The initialization of

diverse population can be achieved by employing The Latest

Workstation (TLW) rule-based method initialized popula-

tion combined with an additional self-tuned anti-backlogging

algorithm between crossover and mutation.

In recent years, appropriate self-tuning procedures has

been implemented into other machine learning techniques.

For instance, a unique Self-Adaptive Local Search (SALS)

has been introduced for multi-objective optimisation pur-

poses [23]. The SALS performs an automatic heuristic vari-

able learning process to eliminate complicated parameter

fine-tuning and to deliver performance enhancement. A fuzzy

logic-tuned algorithm was executed to manipulate parame-

ter setting iteratively, based on Particle Swarm Optimisation

(PSO) performance [24]. As a result, the automatic cus-

tomization of inertia and velocity ranges as well as cognitive

and social values for an individual particle yields viable solu-

tions with a faster convergence rate than standard evolution-

ary algorithms. An improved firefly algorithm was assigned

to resolve multivariate non-linear equations with a real and

complex number [25]. By benchmarking against GA and

differential evolution, the firefly algorithm obtained precise

roots with adaptive light intensity modification by referring

to the finest firefly collections without a priori knowledge.

In conclusion, various efforts from previous research in

parameter tuning algorithm, especially for GA heuristic func-

tion, has shed light on performance upgrade in an adaptive

manner. The resolutions include control of genetic operator

values and functions during simulation and the introduction

of new heuristic evaluation tasks, operators and constraints.

In general, the proposed parameter tuning methodology

can be organized into three main categories: deterministic

approach, adaptive approach and self-adaptive approach [26].

Nonetheless, a parameter tuning technique has yet to be

developed to consider genetic operators and stopping criteria,

even though the interdependency of both GA customized

rules is vital to the stability of the parameter tuning mech-

anism, especially multi-objective optimisation.

We also observed that as STLA-GA parameter tuning

requires additional computation process, the trade-off

between computational effort and machine learning algo-

rithm performance is non-trivial. Reference [27] has sug-

gested that the population size is maintained at a constant

value regardless of the number of operators because compu-

tational time is proportional to population size [28]. On the

other hand, [15] has argued that a population size above 15 is

more robust in preserving genetic variation. Furthermore,

the robustness of the parameter tuning algorithm is doubtful

since the fitness response is not only problem-specific but

also dependent on adopted if-else conditions, criteria and

search strategies. In addition, [29], [30] has noted that tuning

the value of the crossover operator and small-scale population

sizing is advantageous for exploitation, while a relatively

large mutation rate and population pool are preferable when

exploration is required.
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TABLE 1. Confusion matrix: description.

III. METHODOLOGY

Supervised classification learning is generally designed in

two phases: the classifier training stage and followed by

classifier testing. During the training period, the designated

classifier applies embedded learning function f to correlate

feat training input features x ∈ R
feat and K unique output

target labels y ∈ {1, 2, · · · ,K }. The classifier learning pro-

cess f : R
feat → {1, 2, · · · ,K } is conducted by supplying

training feature vector sampling xs to represent target label ys
at the instant of sampling time s = {1, 2, · · · ,N − 1,N } for

N samples.

Upon satisfactory learning results, trained classifiers are

given the testing feature vector to perform prediction accord-

ing to the instant of sampling time. Prediction accuracy refers

to the similarity between classifier-predicted target labels

and testing-output target labels. By labelling the classifier-

predicted output as ŷ, the misclassification rate mis for

testing-fold dataset size N is measured as:

error, e = l(ŷ, y)

{

1, if ŷ 6= y

0, if otherwise

mis =
1

N

∑

e (1)

Further comparison between y and ŷ is possible with the

confusion matrix. Assuming binary classification, two pre-

diction outcomes are possible: Positive (1) and Negative (0).

The confusion matrix provides an overview of the tabulation

of N instance numbers for both decisions by arranging clas-

sifier prediction outcomes in rows and having actual output

target labels correspond to columns. Table 1 outlines the con-

fusion matrix structure and elements. The diagonal elements

in a 2 × 2 confusion matrix present the number of correct

predictions: True Positive (TP) and True Negative (TN).

Off-diagonal elements in a confusion matrix produce two

types of prediction error: False Positive (FP) and False Nega-

tive (FN). Classifier performance is then measured quantita-

tively with confusion matrix statistical analysis.

Nonetheless, because the feature quality is unknown,

redundant input data may contribute to overfitting, which

decreases prediction accuracy. Moreover, the feature subset

combination number is an exponential function of the total

feature number, 2feat . This study’s objective is to demonstrate

the effectiveness of heuristic feature selection optimisation by

resolving ‘the curse of dimensionality’. Typically, theGenetic

Algorithm (GA) heuristic function applies fitness function as

the optimum target. Evidently, GA feature selection optimi-

sation is multi-objective, which include but are not limited

to optimal fitness function response with the most relevant

feature subset. Thus, it is feasible to embed unique classifiers

into GA to search for relevant feature subset RGA feat ⊂ R
feat

which returns prediction error cost function ê.

ê = argmin
e

f (RGA feat ) (2)

The following subsections introduce the GA feature selec-

tion methodology and propose modifications in Self-Tune

Linear Adaptive-GA (STLA-GA). Next, it briefly explains

the theory of Particle Swarm Optimisation (PSO) and dis-

cusses a list of classifiers, including the Artificial Neural

Network (ANN), k-Nearest Neighbors (k-NN) and Support

Vector Machine (SVM).

A. STANDARD GA

The GA is designed to discover the optimum solutions within

the feat-dimensional search space using the theory of evolu-

tion through natural selection. By means of natural selection,

the GA repeatedly evaluates the current candidate population

and revises the upcoming population based on the chosen can-

didates. The chosen candidates are those parents with the best

score among the current population or are randomly selected

candidates. For each successive generation, one or more cho-

sen candidates are responsible for creating a pool of offspring

with similar genes. The chosen candidate remains available

within the population until it is replaced by offspring with a

better fitness score.

Three standard genetic operators and stopping criteria are

available to modulate the population. First, the selection

operators choose the parents from the candidate population.

Second, crossover operators combine the chromosomes of

the parents. Third, mutation operators induce random per-

turbation on the chromosomes before passing them to the

offspring. The GA simulation stops when the pre-set stopping

criteria are met. The general stopping criteria are maximum

generation numbers, maximum generation for static best

score, and target score.

In terms of the feature selection problem, the candidate

is represented by the chromosome CH as a binary string

of numbers 0 and 1 (CH ∈ {0, 1}), with the exact length

of the number of features feat (CH ∈ R
feat ). The number
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FIGURE 1. Tournament selection and elite count function.

FIGURE 2. Scattered crossover function.

of candidates is labelled as pop size. The tournament selec-

tion function is employed to choose the best scorer as the

parent from a candidate pool. The number of parents is

determined using the elite count function value (see Fig. 1).

The scattered crossover function is the most favorable to deal

with a bit string population without linear constraints (see

Fig. 2). Lastly, the mutation probability value designates the

chance that a particular gene flips from its initial binary state.

The probability of a mutation event occurring is denoted as

0 ≤ P(mu) ≤ 1.

The product of the genetic operators is a group of updated

binary sequence responsible for feature selection in next GA

generation. Each and every feature to be considered will

be assign to a binary element in the sequence. For ease of

practice, the column number of a particular feature in the

input matrix is equivalent to the element index number in the

sequence. The feature is selected as part of feature subset if

the corresponding element of a sequence is ‘1’. By contrast,

element ‘0’ indicates the feature is excluded as a member of

feature subset. With feature subset as input, the target of the

fitness function in GA is to minimise prediction error to reach

as close to zero as possible (i.e., global optimal solution).

Standard GA practice applies a static genetic parameter

setting over generations. The initial populated candidates are

randomly generated to enable equal distribution within the

sparse search space, as the location of the global best score

is unknown. The subsequent populated candidates generated

with low probability mutation rate is expected to search

within the local surrounding of the best score. During the

occurrence of local convergence, it is considered to be redun-

dant when mostly identical populated candidates repeatedly

exploit a narrow search space for generations. On the other

hand, relatively large population size and high mutation prob-

ability rate are advantageous for search space exploration.

Nonetheless, the result of a large evaluation number is com-

paratively computation expensive and elitism tracking that

will be ignored if the mutation event happens frequently.

B. STLA-GA

As the name implies, STLA-GA alters typical genetic opera-

tor parameters and unique thresholds in an adaptive fashion in

order to acquire multi-objective optimisation. The parameter

tuning flow sequence begins with the initialization of the

conservative parameter for mutation probability rate (mu),

population size (pop size), generation limit (opt gen), and

convergence threshold values. Conservative initialization at

generation iter = 0 is an attempt to exploit the initial elite

child to achieves the global optimum value with minimal

computation cost.

After allowing convergence for a predetermined candi-

date evaluation number, defined as the threshold , STLA-GA

re-evaluates a list of related parameters upon static global

optimal detection or new global best value update. In other

words, classifier performance over simulation time serves as

the STLA-GA parameter-setting indicator. Assuming local

convergence occurs with the presence of stagnant perfor-

mance over 2 GA generations, STLA-GA shifts to an explo-

ration setting via a set of linear additive gain increment

control equations (3) - (5). Bymeans of an exploration setting,

STLA-GA aims to improve population diversity and extend

the search space by gradually increasing the population size

and mutation probability rate.

gain =
mumax − muiter

opt gen− iter + 1

muiter+1 = muiter + gain (3)

pop sizeiter+1 = pop sizeiter + gain× gaiter (4)

threshold = pop size+ threshold (5)
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FIGURE 3. Feature subset number from the population of the last generation.

The significance of linear additive gain increment con-

trol equations is illustrated by comparing the candidate

population of a 17-feature dataset using two GA methods.

Standard GA adopts static conservative parameter set-

ting, while STLA-GA uses exploration-exploitation cycle-

embedded parameter tuning framework. When convergence

occurs at the end of the simulation, STLA-GA opts for the

exploration setting (higher number of population candidates

and mutation probability) rather than settling for identical

GA parameters over generations. Fig. 3 demonstrates the

histogram for the feature subset size available from the popu-

lation generated by the GA methods at the end of simulation.

The histogram’s bar colours are set as blue and green to

symbolise the feature subset size produced by STLA-GA and

Standard GA, respectively. As Fig. 3 shows, feature subset

size extracted from the last STLA-GA population varies in

contrast to the last Standard GA population. The STLA-

GA exploration setting creates diverse populated candidates,

ranging from 6 to 13 in feature subset size, while StandardGA

population members are either 9 or 10 features. The unique

feature subset size is 8 for STLA-GA and 2 for Standard

GA. Population diversity involving STLA-GA is maintained

at an acceptable level, which is superior in global best solution

discovery to the Standard GA population.

Next, the exploitation setting is initiated upon an update

of the global best score. Exploitation settings engage initial

conservative GA parameters, and they aim to capitalize on the

potential new global best solutions available in new neighbor-

hoods during the convergence period before returning to the

exploration setting.

In summary, the STLA-GA parameter tuning mechanism

focuses on supplying an advantageous background based on

the recent classifier performance. In contrast to the static GA

genetic parameter setting, the dynamic STLA-GA genetic

parameters allow the heuristic search method to choose

exploring or exploiting the targeted search space as a feasible

means to search for global best scores. While attempting to

avoid local convergence, the exploration-exploitation cycle

allows for an analytical trade-off between computation cost

and information-tracking. Fig. 4 provides the summarized

STLA-GA exploration-exploitation cycle.

To observe STLA-GA-tuned parameters, revisions to the

current stopping criteria are essential. More specifically, a set

of hybrid criteria comprising new parameter tracking and

typical GA stopping criteria are necessary to monitor heuris-

tic optimisation activity. As such, a floating value range

limit is recommended to each STLA-GA tuned parameter

in order to ensure stable feedback and prevent inconsistent
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FIGURE 4. STLA-GA exploration-exploitation cycle.

performance as a result of overaggressive parameter varia-

tion. For instance, a STLA-GA tuned mu higher than 0.5

(max mu), pop size above three times the initial values

(max pop) or threshold value higher than the expected

STLA-GA evaluation number remaining (gen iter) results in

exhaustive simulation and lost information.

To allow room for convergence, STLA-GA also modi-

fies the maximum generation limit, opt gen. Thus, the full

exploitation-exploration cycle activation is engaged to avoid

undesirable premature termination. Moreover, the conver-

gence limit, Dist , is applied in order to review the per-

formance gap between iterative global best and population

average. The Dist update represents a numerical local con-

vergence indicator when the difference between the best

performer and population average reach an unprecedented

low. In other words, the current population lacks diverse

candidates as convergence occurs.

For every STLA-GA generation, the aforementioned val-

ues are measured, compared and updated accordingly. The

adaptive exploitation-exploration iterations are terminated

only when the stopping criteria has been met. A thor-

ough STLA-GA parameter tuning execution flow is depicted

in Fig. 5 and Algorithm pseudo code 1 and 2.

C. PARTICLE SWARM OPTIMISATION

Particle Swarm Optimisation (PSO) is regarded as a branch

of Swarm Intelligence (SI) attentive to the collective patterns

of group-based particles. Deemed the opposite of individual-

istic optimisation methods, which have limited capabilities,

PSO has an origin motivated by the sociality of animals

in a high-pressure environment (e.g., searching for food).

Analogously, PSO tracks the interaction of a swarm of homo-

geneous particles as a candidate population. Every particle

performs similar fitness function individually. Subsequently,

PSO encourages environment-related information-exchange

among peers to promote collaboration and competitiveness

in the quest for the global best solution.

The collective behavior of particles operating simultane-

ously as multi-agents in the feat-dimensional search space

is characterized as particle movement constituting both cog-

nitive component and social component. In other words,

the trajectory of a particle across a search space is nav-

igated by both personal best position P and global best

position Pbest . Assuming the initialized pop size particles

are equally distributed throughout the search space and

particle i is a member of the candidate population (i ∈

{1, 2, · · · , pop size}). The coordinate vector xi(j = 0) =

[xi1, xi2, · · · , xifeat−1, xifeat ] describes the starting location of

particle i. The updated position xi(j + 1) (6) is a function

of the previous position and newly revised velocity vector

vi(j+ 1) = [vi1, vi2, · · · , vifeat−1, vifeat ] (7).

xi(j+ 1) = xi(j) + vi(j+ 1) (6)

vi(j+ 1) = vi(j)
︸︷︷︸

inertia

+ c1(Pi − xi(j))R1
︸ ︷︷ ︸

cognitive

+ c2(Pbest − xi(j))R2
︸ ︷︷ ︸

social

(7)

Velocity vector v is responsible for controlling the tra-

jectory and momentum of a particle by considering three

influencing factors: inertia, cognitive component, and social

component. Inertia inherits v(j) from the previous iteration to

secure path stability and enable personal information-sharing

over iterations. The cognitive component compares current

position x(j) and Pwhile allowing a particular particle incline

towards P during next iteration. Concurrently, the social com-

ponent stimulates the tendency of approaching Pbest obtained

by the swarm through calculating the distance between x(j)
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FIGURE 5. STLA-GA parameter tuning process flow.
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Algorithm 1 Algorithm for STLA-GA Feature Selection

Evaluation
Input: STLA-GA operating parameters, training and testing

datasets

Output: Feature subset

Initialisation : Load STLA-GA operating parameters,

training and testing datasets

LOOP Process

1: for Generation = 0 to opt gen do

2: for candidate = 1 to pop size do

3: Classifier training with training dataset contains

feature subset only

4: Perform prediction and validation with testing

dataset

5: if (iterative best classification score, giter >

existing global best classification score, gbest ) ∨

(Generation = 0 ∧ candidate = 1) then

6: update gbest = giter , gaiter = 0, classifier, and

best feature subset

7: reset initial STLA-GA and classifier setting

8: else

update static iteration: gaiter = gaiter + 1

9: end if

10: end for

11: Run STLA-GA parameter tuning function

12: end for

13: return Best feature subset

and Pbest . The iterative update on position x and velocity v for

the candidate population ends upon meeting predetermined

stopping criteria. The standard PSO stopping criteria can

be found similarly to those of GA: PSO simulation ends

when maximum iteration (opt gen), maximum convergence

iteration of global best score, or the pre-set fitness function

target is achieved.

Because PSO implementation is parameter-dependent,

numerous parameter-wise considerations have been sug-

gested in pursuit of PSO performance improvement. The

particle velocity involving several elements is an integral part

for PSO algorithm. During initialization, starting velocity

V (j = 0) = {v1(j = 0), v2(j = 0), · · · , vpop size(j =

0)} is advised to set small random numbers as exploration

ability is assured by evenly distributed particle positioning.

The combination of acceleration constant C = {c1, c2},

0 ≤ c1, c2 ≤ 4 defines the iterative pace to reach to P

and Pbest . Based on case study results, C is initialized to 2 to

form a compatible pair with randomly generated diagonal

matrix R ∈ {R1,R2},R ∼ U (0, 1) to induce a stochastic

variable into the revised velocity value [31]. Meanwhile,

velocity damping and inertia weights are recommended to

deter unstable velocity and out-of-range particles. Veloc-

ity damping is proposed in the form of velocity-allowable

range, which varies in accordance with the search space

area. As for inertia weight allocation, the alternatives include

fixed limit range, stochastic weight assignment, and linearly

Algorithm 2 Algorithm for STLA-GA Parameter Tuning

Input: STLA-GA operating parameters

Output: STLA-GA operating parameters

Initialisation : Load STLA-GA operating parameters

1: Check convergence status for currentGeneration:Dist =

current average Score - current Best Score

2: if (Dist < Dist gbest ) then

3: update Dist gbest = Dist , opt gen, and convergence

generation count, con iter

4: if convergence generation count equals convergence

generation limit: (con iter ⇐⇒ con max) then

5: Convergence obtained: STLA-GA simulation

stopped

6: end if

7: end if

8: if static iteration, (gaiter > threshold) then

9: update STLA-GA parameters exploration setting:

gain, pop size,mu, threshold, and score

10: update expected evaluation number remaining,

gen iter

11: end if

12: Check STLA-GA customized Stopping Criteria:

13: if (mu > maxmu)∨ (popsize > maxpop)∨ (threshold >

gen iter) then

14: Convergence detected: STLA-GA simulation

stopped

15: end if

16: if (mu = 0.1) ∧ (opt gen - current Generation <

Minimum Convergence Gen) then

17: Allow room for convergence: opt gen = opt gen +

Minimum Convergence Gen

18: end if

19: returnUpdated STLA-GA operating parameters∧ Stop-

ping Criteria message

weight increment/decrement. Hence, (7) with additional iner-

tia weight ω is rewritten as:

vi(j+1) = ω(j+1)vi(j)+c1(Pi−xi(j))R1+c2(gbest−xi(j))R2

In relation to feature selection complication, additional

conversion is needed to adapt the velocity vector vi ∈ R
feat

to binary sequence. The swarm-based heuristic optimisation

method is coined specifically as Binary PSO (BPSO) in

response to transformed v
′
(8) and binary sequence xi (9).

It is worth mentioning that 0 < v′ < 1. Consequently, v
′

im

functions as the perturbation probability for index number m

in the xi vector. A simplifiedBPSO feature selection sequence

is outlined in Algorithm pseudo code 3.

v′im =
1

1 + e−vim
, m = {1, 2, · · · , feat} (8)

xim(j+1) =

{

|xim(j) − 1|, if v′im > µ

xim(j), if v′im < µ
µ ∼ U (0, 1) (9)
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Algorithm 3 Algorithm for BPSO Feature Selection

Evaluation
Input: BPSO operating parameters, training and testing

datasets

Output: Feature subset

Initialisation : Load BPSO operating parameters,

training and testing datasets

LOOP Process

1: for iteration j = 0 to opt gen do

2: for particle i = 1 to pop size do

3: Assign particle position/binary sequence, xi(j)

4: Classifier training with training dataset contains

feature subset only

5: Perform prediction and validation with testing

dataset, f (xi(j))

6: if (iterative classification score, f (xi(j)) > existing

best classification score for particle i, f (Pi)) ∨

(j = 0) then

7: update Pi = xi(j)

8: if (iterative classification score, f (xi(j)) >

existing global best classification score,

f (Pbest )) ∨ (j = 0 ∧ i = 1) then

9: update Pbest = xi(j)

10: end if

11: end if

12: end for

13: Update particle velocity, vi(j+ 1) via (7)

14: Transform vi(j+ 1) to v′i(j+ 1) via (8)

15: Update particle position/binary sequence, xi(j+ 1)

via (9)

16: Check BPSO Stopping Criteria

17: end for

18: return Best feature subset Pbest

Significantly, a high level of similarity between BPSO and

GA heuristic optimisation is observed. Notably, bothmethods

deploy candidate populations for the global optimal solu-

tion iterative search, derive benefits from elite child/fittest

swarm, apply mutation/perturbation to create population

diversity, and obey similar stopping criteria. Therefore, dif-

ferent heuristic feature selection concepts will be compared.

D. ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANNs) are multilayered model

structures on human brain functionality. In essence, ANN

consists of the input layer, hidden layer, and output layer

which are formed by one or more neurons in parallel and

are interconnected in series via neurons (see Fig. 6). Signals

flows into the ANN model as input x through the leftmost

input layer to be reduced to neuron weight w and output

signal y. Thus, x ·w = y.w is assessed with a predefined train-

ing function to symbolise the connection strength between

x and y. The output signal eventually serves as the input for

the adjacent layer to the right. The evaluation is conducted

for the subsequent layers until the output layer located at

the rightmost position to allow detailed data abstraction in

multitier. Throughout the training phase, w for every neuron

is tuned until the output performance is optimized.

It is observed that the quantity of input and output neurons

are fixed in consistent with the feature size and the number of

output label. The dimension of the hidden layer and training

function, however, can be customized to determine the model

complexity.

E. K-NEAREST NEIGHBORS

k-Nearest Neighbors (k-NN) classification seeks the shortest

k-interval between feature x and the targeted points of class y.

The pre-set value k ranges between 1 ≤ k < N and refers

to the number of the nearest neighbor points to be identified

from N member x. Two main types of distance cost function

generally apply to locate k-NN: an exhaustive search and the

k-d tree method. Exhaustive search measures and sorts the

computed point distance in ascending order while k-d tree

segregates point distance according to BucketSize per group.

Distance metrics selection depends on the feature number.

Exhaustive search is suitable for classification involvingmore

than 10 features, and k-d tree performs better with fewer

features.

Fig. 7 presents a simplified example of k-NN classifi-

cation. k-NN classifier explores the nearest points to the

origin from input feature x1 and x2 with k-d tree search

strategy. By setting k = 3, the target is comparatively

closer to x2 as the 3 nearest points are identified as being

from x2.

F. SUPPORT VECTOR MACHINE

The theory behind Support Vector Machine (SVM) is best

explained with binary classification (see Fig. 8). The function

of a SVM is to customize the decision boundary using a fitted

line known as the hyperplane. The hyperplane plot is guided

by a selection of data points (support vectors) from classes

affected by the decision boundary. The fitness of a hyperplane

is influenced by two factors: the separation of data points

corresponding to associated class and the distance between

hyperplane and support vectors. Hence, the hyperplane map-

ping (10) search for optimizing the vacant area adjacent to

the hyperplane and the nearest support vector by solving ‖β‖

cost function.

f (x) = x ′β + b = 0 (10)

yif (xi) ≥ 1, i = {1, 2, · · · ,N − 1,N } (11)

A hyperplane is considered acceptable when (11) is sat-

isfied. x and y refer to N training input data points and

respective class labels, where x, β ∈ R
N , y ∈ ±1, and b = R.

The support vectors located on the boundary of the vacant

area are defined as yif (xi) = 1. Notice the value for yif (xi) is

directly proportional to the gap between data point xi and the

hyperplane.

There are two class label assignment options available for

SVM classification purposes. For multiclass classification
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FIGURE 6. Artificial neural network: overview.

with a finite number of class labels K , one-versus-one setup

implements the max-wins voting strategy for each pair of

classes. The one-versus-one strategy breaks down one multi-

class classification problem intoK (K−1)/2 binary classifica-

tion problems. Meanwhile, the one-versus-all configuration

exercise uses a ‘‘winner-takes-all’’ tactic.

IV. MATERIAL AND METHODS

The newly developed STLA-GA algorithm and two fea-

ture selection benchmark methodologies (Standard GA and

BPSO) are subjected to four types of multiclass machin-

ery dataset for validation. To reflect the state of the tar-

geted machines from different perspectives, the dataset was

obtained using various sensor types. The input measurement

identifies as feature ranging from temperature (◦C), speed

(m/s), vibration (mm/s), pressure (Bar), volume flow (l/min),

torque (N/m) to sensor locations and directions.

The first dataset involves condition monitoring of a

hydraulic system [32]. For a standard 60-second cycle, 17 ele-

mentary component process indicators focused on the cooler,

valve, pump, and accumulator are recorded under constant

load. The cyclic measurement is repeated 2,205 times. For

every measurement cycle, the health status of the compo-

nents is denoted as the equipment health percentage (%),

leakage level (Unit), internal component pressure reading

(Bar), and a stability unit scale. The resulting output target

is a numeric matrix combining five unique health indication

vectors (yHydraulic ∈ R
2205×5). Table 2 outlines the hydraulic

system dataset information.

The second dataset presents a mechanical pump analy-

sis for diagnosis purpose [33]. For 209 sampling iterations,

seven features are registered together with the corresponding

equipment state. The supplied input features are pump speed,

measurement frequency, number of measured component and

support, and measurement values along with measurement

type and direction for the instant measurement event. Six

equipment states are labelled as class numbers in a range

of between one to six. Table 3 shows the details for pump

dataset.

Third dataset relates to classifying robot execution fail-

ure events [34]. A robot execution failure dataset studies

the force and torque sampling measurement in triaxial force

sensor direction and triaxial torque sensor direction. Eight

statistical features are extracted from a given time series

samplingmeasurement at a particular sensor direction. A total

of 48 features (8 features× 6 sensor directions) are generated

to categorise 463 occurrences. Fifteen unique class labels are

observed after combining all five failure execution datasets.

Table 4 itemizes the feature inputs and target labels for robot

execution failure dataset.

Nonlinear model parity-equations residual generation for

centrifugal pumps fault diagnosis [35] is organized as the

fourth classification dataset. A centrifugal pumps dataset con-

taining pump rotational speed (RPM), motor torque (Nm),

pressure differential (1p), and flow rate (m3/s) is recorded

at a sampling frequency of 10 Hz . Four interconnected

centrifugal pumps system models are acquired to simulate

the nonlinear function under the influence of pump operating
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FIGURE 7. k-nearest neighbors classification: overview.

speed (see Fig. 9). The estimate of model parameters θd , d =

{1, 2, · · · , 9, 10} utilizes static pump system identification,

piecewise linear approximation, and the nonlinear autoregres-

sive with exogenous terms (ARX) model to construct the

black box function in linear form for three speed intervals

(Table 5). As a result, intermediate outputs are simulated

with Pseudorandom Binary Signal (PRBS) as reference input

initialization setup.

Consequently, fault diagnosis is examined using resid-

ual analysis under various running conditions with differ-

ent operating speeds. The residues r = {r1, r2, r3, r4} for

10 pump operation classes (1 healthy pump condition and

9 faulty modes) are the variation between measured outputs

and simulated outputs. For each mode, 20 residue-generated

statistical features (5 features × 4 models) are extracted for

50 repetitions. Table 6 summaries the list of feature inputs and

target labels for the respective dataset. Additionally, Table

7 provides the statistical features implemented in the datasets.

To ensure a consistent benchmark across feature selec-

tion methodologies, standardisation is introduced to the

selection of initial heuristic optimisation parameters and

machine learning classifiers. The parameter initialization for

the conservative GA genetic operator (Table. 8) and BPSO

(Table. 9) are coupled separately with five types of classifiers.

The aforementioned standard classifier setting is selected due

to its ease of implementation and highest prediction accuracy

acquired from trial and error.

A recap of the hydraulic system condition monitoring

dataset indicates that the output target label consists of a

matrix with five unique numeric vectors of equal length

(N = 2205). Each vector represents a particular equipment

health indicator. The k-NN and SVM classifiers address pre-

diction in vector form. In consequence, five k-NN classifiers

and five SVM classifiers are needed to examine the output

label matrix. Furthermore, k-NN and SVM generates differ-

ent feature subset vectors for each hydraulic system equip-

ment health indicator. Due to the dataset complexity, an ANN

classifier is generated for a hydraulic system dataset feature

selection benchmark. The ANN model returns a feature sub-

set vector and performs numeric prediction in matrix form,

which are both attributable to its multi-layer model struc-

ture. A classic graphical ANN model (Levenberg-Marquardt

function feedforward model with one hidden layer and a size

of 10 parallel neurons) is applied to the hydraulic system

dataset to observe the output labels.

For the multiclass classification dataset (pump, robot exe-

cution failure, and centrifugal pumps residual analysis),

five unique classifiers are implemented to determine the
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FIGURE 8. Support vector machine binary classification: overview.

FIGURE 9. Centrifugal pumps modeling and residual analysis: system overview.

best predictor. A scaled conjugate gradient function (trainscg)

feedforward model with one hidden layer the size of 10 paral-

lel neurons is assigned as the standard ANN pattern recogni-

tion classifier. Distance based k-NN with k = 5 is integrated

with two operating frameworks: an exhaustive search and the

k-d tree. The SVM classifier is engaged with both the one-

versus-all and one-versus-one approaches. The best predictor

of classification performance is further embedded into feature

selection methods for comparison.

Different prediction appraisal rules are required, as the

available target label varies between datasets. The standard

system identification regression efficacy indicator is applied

to analyses numeric prediction of hydraulic system states.

For the hydraulic system, the numerical prediction accuracy

is represented by the average percentage of coefficient of

determination, R2T regression analysis (12):

R2T =

∑

(ŷ− y)2
∑

(y− ȳ)2
(12)

where y is the average output.

For multiclass classification dataset, the classification pre-

diction accuracy ((1 − mis) × 100%) is measured when the
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TABLE 2. Dataset 1 description: hydraulic system.

TABLE 3. Dataset 2 description: pump.

prediction outcome and testing output label subset are avail-

able. Next, the classifier performance is evaluatedwith confu-

sion matrix statistical analysis. For multiclass classification,

we split the confusion matrix for K unique class labels into K

binary confusion matrices and perform the macro-averaging

method [36]. To obtain the average confusion matrix statisti-

cal indicator value, every class label takes a turn as the target

label (Positive label).

Six confusion matrix statistical indicators are applied

according to Table 10:

1) The classifier sensitivity is introduced as the ratio

of True Positive (TP) samples to total Positive (P)

samples.

2) The classifier specificity is the ratio of True Negative

(TN) samples out of the total Negative (N) samples.

TABLE 4. Dataset 3 description: robot execution failure.

3) The classifier precision is the proportion of TP sam-

ples with respect to total predicted Positive samples

(TP+FP).

4) Undesirable False Positive Rate (FPR) is the fraction

of FP samples in total predicted Negative samples

(FP+TN).

5) F-measure is a balancing function to calculate the har-

monic mean of sensitivity and precision.

6) Matthews Correlation Coefficient (MCC) measures the

strength of the statistical relationship between y and

ŷ, especially when an imbalanced dataset is involved.

It is worth noting that the numerator of MCCmultiplies

the inner diagonal elements of the confusion matrix in

a criss-cross pattern. By contrast, the denominator of

MCC is the multiplication of the outer element of the

confusion matrix.

A classifier is considered perfect when there is a total

agreement between y and ŷ (F-measure∧MCC= 1). A com-

pletely wrong classifier is obtained when total disagreement

happens between y and ŷ (F-measure = 0 ∧ MCC = −1).

In addition, ten-fold cross-validation is imposed on the

simulation datasets to evaluate the reproducibility of fea-

ture subset-trained classifier performance when subjected

to untrained datasets. In cross-validation, the loss function

kfoldLoss (13) is applied to calibrate the average misclassifi-

cation proportion of testing-fold target output. The robustness

of a cross-validated classifier is inversely proportional to
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TABLE 5. Centrifugal pumps modeling and residual analysis: description.

TABLE 6. Dataset 4 description: centrifugal pumps fault diagnosis.

loss value.

kfoldLoss =
1

10

10
∑

kfold=1

miskfold (13)

The prediction outcome for 10 simulation cycles-including

the number of feature subset, computation time, prediction

accuracy, confusion matrix statistical analysis, and classifi-

cation loss for the ten-fold cross-validated classifier-are tab-

ulated in the following section. The simulation is performed

using the 2019a version of Matlab software as the Integrated

Development Environment (IDE). Matlab software is run on

a 64-bitMicrosoftWindows 7 operating system installed with

2.20 GHz Intel Xeon CPU processor and 32 GB random

access memory.

V. RESULTS AND DISCUSSION

This section describes the prediction outcome for four

machinery datasets. The result tabulation begins with

a classifier prediction performance review when sub-

jected to multiclass classification datasets, according to

Table 11, 12, and 13. In general, the objective of a classi-

fier is to obtain optimal prediction accuracy by minimising

undesirable prediction error. For each dataset, the classifier

with the highest prediction accuracy is embedded into fea-

ture selection mechanisms. The prediction outcome with and

TABLE 7. Statistical features: description.

without the feature selection technique is compared, followed

by a feature selection performance evaluation. Table 14 to 17

summaries the average value for classifier prediction perfor-

mance, all of which correspond to feature selection methods

and datasets.

A. CLASSIFIER PREDICTION PERFORMANCE

WITHOUT FEATURE SELECTION

Table 11 indicates the pump dataset prediction outcomes

using five unique classifier settings. The ANN pattern
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TABLE 8. Genetic algorithm parameter initialization selection.

TABLE 9. Binary particle swarm optimisation parameter initialization
selection.

TABLE 10. Confusion matrix statistical analysis.

TABLE 11. Classifier prediction performance without feature selection for
pump dataset.

recognition model documented the highest prediction accu-

racy, followed by k-NN classifiers and SVM classifiers.

However, the ANN model also recorded one of the high-

est kfoldLoss values. During model training, the ANN

model is likely to experience bias in datasets, which causes

TABLE 12. Classifier prediction performance without feature selection for
robot execution failure dataset.

TABLE 13. Classifier prediction performance without feature selection for
centrifugal pumps residual analysis for fault diagnosis dataset.

TABLE 14. ANN numerical prediction result: Hyrdraulic system.

TABLE 15. k-NN multiclass classification prediction result: pump.

decrements in prediction accuracy upon ten-fold cross-

validation. We selected the k-NN classifier with k-d tree

framework specifically for pump dataset feature selection due

to the second highest prediction accuracy (42.47%) together
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TABLE 16. SVM multiclass classification prediction result: robot
execution failure.

TABLE 17. SVM multiclass classification prediction result: Centrifugal
pumps residual analysis for fault diagnosis.

with the lowest kfoldLoss value (0.5670) and a total evalua-

tion time of 0.3 s.

With a similar classifier setting, Table 12 displays the robot

execution failure dataset prediction results. Of five options,

the SVM classifier in conjunction with the one-versus-one

approach achieved the best prediction accuracy (66.52%),

the least kfoldLoss value (0.2772) and a total evaluation time

of 5.0 s. The one-versus-one SVM classifier is the most

suitable alternative for robot execution failure dataset feature

selection.

Table 13 shows the centrifugal pumps residual analysis for

fault diagnosis dataset prediction performance with five dif-

ferent classifier setups. The one-versus-one approach embed-

ded SVM classifier obtained the highest prediction accuracy,

at 82.80%. The robustness of the SVM classifier is assured

by the lowest kfoldLoss values gained in cross-validation,

although SVM classifier required the longest evaluation

time (4.8 s and 5.0 s). SVM classifier combined with the

one-versus-one approach is the preferable option for feature

selection comparison.

B. BENCHMARKING OF FEATURE

SELECTION TECHNIQUES

By establishing prediction without feature selection as the

baseline condition, the mean prediction accuracy percentage

increases at least 5.84%, 4.40%, 7.22%, and 1.10%, respec-

tively, with standard feature selection practice. The corre-

sponding kfoldLoss value for feature subset-trained classifiers

reduces in response to the increment of prediction accuracy.

As the results suggest, the main contributing factor to pre-

diction performance is likely the reduction of the overfitting

issue in feature selection. With a combination of relevant fea-

tures, prediction performance appears directly proportional to

the feature subset reduction percentage.

It should be highlighted that additional computation effort

is required to perform heuristic feature selection as displayed

in total evaluation number and time. The effectiveness of

feature selection methodologies based on dataset prediction

outcomes is reviewed in subsequent sections, followed by a

thorough conclusion.

1) DATASET 1: HYDRAULIC SYSTEM

Table 14 tabulates the numerical prediction performance

for the hydraulic system condition monitoring dataset. The

STLA-GA method attained the highest average prediction

accuracy (92.52%) and feature subset reduction percentage

(52.94%). We noticed that both Standard GA and STLA-GA

obtained an identical best feature subset reduction percent-

age. Nevertheless, both feature selection methods deliver

unique feature subsets: 8 of 17 features selected by STLA-GA

are (relatively speaking) more relevant in reflecting the con-

ditions of the hydraulic system with the maximum prediction

accuracy (94.20%) and minimum kfoldLoss value (0.1054).

The advantage of STLA-GA can be verified with

the hydraulic system prediction performance presented

in Fig. 10 and 11. Plotting classifier performance over

generations reveals that convergence occurs as prediction

error remains stagnant prior to tenth generation. Eventu-

ally, STLA-GA acknowledges that convergence occurred,

switches to the exploration setting, and overcomes the

local optimum at tenth generation. Since global best score

improved near the end of the simulation, generation limit

opt gen is extended accordingly to accommodate the full

exploration-exploitation cycle. In contrast to Standard GA,

low population candidate variation and static genetic operator

parameters are less likely to help in a similar situation.

2) DATASET 2: PUMP

Table 15 outlines the pump multiclass classification predic-

tion results, showing the STLA-GA selected feature sub-

set performed slightly better than the other two feature

selection choices. A noticeable classifier performance gap
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FIGURE 10. Hydraulic system dataset: STLA-GA fitness function performance over
generations.

FIGURE 11. Hydraulic system dataset: standard GA fitness function performance over generations.

is observed in confusion matrix statistical analysis, even

though the dissimilarity in prediction accuracy and kfoldLoss

is marginal. The STLA-GA feature subset-trained classi-

fier improved classification precision as ŷ accommodates

lower FP value, leading to considerably higher MCC and

F-measure indicators. The main reason behind the classifica-

tion performance difference is likely STLA-GA’s distinctive

feature subset. Similar to hydraulic system dataset, BPSO

and STLA-GA are on par in terms of feature reduction

percentage (42.86%). However, both feature selection tech-

niques selected non-identical feature subset, which contribute

to classifier performance variation.

Fig. 12 and 13 portray the difference between STLA-GA

and Standard GA when local convergence was encountered
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FIGURE 12. Pump dataset: STLA-GA fitness function performance over generations.

FIGURE 13. Pump dataset: standard GA fitness function performance over generations.

at the beginning of heuristic simulation. STLA-GA and

Standard GA managed to overcome local convergence at

the second generation before remaining stagnant in perfor-

mance for the rest of the generations. Further investiga-

tion demonstrates STLA-GA achieved lower prediction error

after switched to exploration setting, in contrast to the static

genetic operators setting.

3) DATASET 3: ROBOT EXECUTION FAILURE

Table 16 demonstrates the results on robot execution

failure multiclass classification prediction performance.

STLA-GA secured the best prediction accuracy (72.61%)

and least kfoldLoss value (0.2454), with the highest fea-

ture reduction rate (56.25%). More in-depth research saw

the STLA-GA feature subset-trained classifier outperformed
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FIGURE 14. Robot execution failure dataset: STLA-GA fitness function performance over
generations.

FIGURE 15. Robot execution failure dataset: standard GA fitness function performance over
generations.

other feature selection methods by small margin in all six

confusion matrix statistical features. We have concluded the

STLA-GA selected the least feature subset (21 out of 48)

amongst the three feature selection options and yet these

features are the most relevant ones.

Fig. 14 and 15 also illustrate the utility of the exploration-

exploitation cycle in adapting to updated classifier

performance. Both STLA-GA and Standard GA experi-

enced local convergence from the beginning of simulation.

Eventually, STLA-GA activated the exploration setting and

overcame local convergence at second generation. Likewise,

Standard GA solved local convergence at second and fifth

generation, but the unwanted prediction error was still greater

than STLA-GA (29.13% versus 27.39%).
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FIGURE 16. Centrifugal pumps residual analysis dataset: STLA-GA fitness function
performance over generations.

FIGURE 17. Centrifugal pumps residual analysis dataset: standard GA fitness function
performance over generations.

4) DATASET 4: CENTRIFUGAL PUMPS RESIDUAL

ANALYSIS FOR FAULT DIAGNOSIS

Table 17 details the centrifugal pumps fault diagnosis multi-

class classification prediction, with 11 of 20 unique residue

features acquired from the nonlinear parity-equations deemed

to be of STLA-GA preference. The STLA-GA feature subset-

trained classifier delivered optimal performance with the

highest prediction accuracy (85.60%) and least kfoldLoss

value (0.1474), as well as having the best feature reduction

percentage at 45%. The feature subset chosen by STLA-GA

are also excelled in the confusion matrix statistical analysis.

The superiority of STLA-GA feature subset-trained classifier

is best shown with the highest MCC and F-Measure values

amongst feature selection alternatives.
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Fig. 16 and 17 also demonstrate the ability of STLA-GA

to obtain a lower prediction error than Standard GA. Local

convergence is observed in both Standard GA and STLA-GA

from the beginning until the second generation. Over the

generations, STLA-GA gradually shifted to the exploration

setting instead of the static genetic operator setting in an effort

to reduce prediction error and again restored to the exploita-

tion setting immediately upon the performance update.

Ultimately, STLA-GA managed to outperform Standard GA

with further prediction error reduction in the eleventh gen-

eration before the simulation was terminated. Additionally,

revision of the maximum generation limit opt gen proven

effective when STLA-GA overcame local convergence mul-

tiple times, including after tenth generation in this case

study.

VI. CONCLUSION

The novel parameter tuning method, STLA-GA, has been

introduced to solve the local optimum problem in heuristic

optimisation. STLA-GA parameter tuning is performed by

embedding a unique exploration-exploitation cycle as a func-

tion of the latest fitness performance. The parameter tuning

strategy can be categorised using two main adaptive char-

acteristics. First, STLA-GA tunes mutation probability rate,

population size, and novel convergence threshold to target a

desirable search space, avoid local convergence, and elimi-

nate manual parameter tuning. Second, maximum generation

number and customized stopping criteria are altered to enable

stable parameter tuning feedback while keep distance from

premature termination and excessive computational effort.

Sufficient machinery-related dataset prediction simula-

tion and the feature selection methodology benchmark

have explicitly emphasised STLA-GA’s optimal performance

regardless of classifier choice. Relative to Standard GA

and BPSO as reputable feature selection choices, STLA-GA

returns more relevant feature subset or higher feature

reduction percentages. The significance of the STLA-GA

feature subset is expressed as better classifier predic-

tion accuracy and minimal kfoldLoss. The quality of the

STLA-GA feature subset-trained classifier has been further

validated by outstanding confusion matrix statistical mea-

sures, in particular of MCC and F-Measure. The main dif-

ference between STLA-GA and standard practice is that

the adaptive exploration-exploitation cycle embedded in

STLA-GA allows feasible parameter tuning for advanta-

geous heuristic optimisation behavior. The influence of the

exploration-exploitation cycle has been verified by compar-

ing fitness performance over generations between STLA-GA

and Standard GA (Fig. 10 to Fig. 17).

However, STLA-GA performance and feature subset

recorded amongst the highest standard deviation values and

computational effort in the form of total evaluation number

and time for all cases. The uncertainty related to performance

is inevitable since STLA-GA has been given an additional

parameter tuning task in order to maintain a certain level of

population diversity. Yet, reasonable population diversity and

computation costs are rewarded with a superior classifier and

feature subset combination.

The STLA-GA stopping criteria analysis also indicates

insightful parameter tracking information at the end of sim-

ulation. Based on the 10 observations, the termination of

STLA-GA was triggered by various customized stopping cri-

teria, while standard GA and BPSO ends when the maximum

generation number is achieved. Indeed, an extensive range

of simulation likelihoods are considered through STLA-GA

hybrid stopping criteria, despite dealing with multi-objective

optimisation. The hybrid STLA-GA stopping criteria not

only enable a parameter stability feedback mechanism but

also perform excessive computation costs and unrealistic GA

information generation detection.

The existing algorithm will be further improved with an

integrated classifier in order to reduce performance discrep-

ancy due to classifier selection. It is possible to describe,

in theoretical terms, the Multiple Input Multiple Output

(MIMO) mathematical relationship with the application of

system identification modeling. Furthermore, the algorithm

will also be tested on different dataset types, such as images

and text recognition.
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