1,757 research outputs found

    Model Order Selection Rules For Covariance Structure Classification

    Full text link
    The adaptive classification of the interference covariance matrix structure for radar signal processing applications is addressed in this paper. This represents a key issue because many detection architectures are synthesized assuming a specific covariance structure which may not necessarily coincide with the actual one due to the joint action of the system and environment uncertainties. The considered classification problem is cast in terms of a multiple hypotheses test with some nested alternatives and the theory of Model Order Selection (MOS) is exploited to devise suitable decision rules. Several MOS techniques, such as the Akaike, Takeuchi, and Bayesian information criteria are adopted and the corresponding merits and drawbacks are discussed. At the analysis stage, illustrating examples for the probability of correct model selection are presented showing the effectiveness of the proposed rules

    Cooperative Radar and Communications Signaling: The Estimation and Information Theory Odd Couple

    Full text link
    We investigate cooperative radar and communications signaling. While each system typically considers the other system a source of interference, by considering the radar and communications operations to be a single joint system, the performance of both systems can, under certain conditions, be improved by the existence of the other. As an initial demonstration, we focus on the radar as relay scenario and present an approach denoted multiuser detection radar (MUDR). A novel joint estimation and information theoretic bound formulation is constructed for a receiver that observes communications and radar return in the same frequency allocation. The joint performance bound is presented in terms of the communication rate and the estimation rate of the system.Comment: 6 pages, 2 figures, to be presented at 2014 IEEE Radar Conferenc

    Learning Strategies for Radar Clutter Classification

    Full text link
    In this paper, we address the problem of classifying clutter returns in order to partition them into statistically homogeneous subsets. The classification procedure relies on a model for the observables including latent variables that is solved by the expectation-maximization algorithm. The derivations are carried out by accounting for three different cases for the structure of the clutter covariance matrix. A preliminary performance analysis highlights that the proposed technique is a viable means to cluster clutter returns over the range.Comment: 12 pages, 13 figure

    Radar Signal Processing for Interference Mitigation

    Get PDF
    It is necessary for radars to suppress interferences to near the noise level to achieve the best performance in target detection and measurements. In this dissertation work, innovative signal processing approaches are proposed to effectively mitigate two of the most common types of interferences: jammers and clutter. Two types of radar systems are considered for developing new signal processing algorithms: phased-array radar and multiple-input multiple-output (MIMO) radar. For phased-array radar, an innovative target-clutter feature-based recognition approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target detection algorithm is proposed for airborne radar. The essence of this algorithm is to compensate for the ground clutter Doppler shift caused by the moving platform and then to cancel the Doppler-compensated clutter using MTI filters that are commonly used in ground-based radar systems. Without the need of clutter estimation, the new algorithms outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in ground moving target detection in inhomogeneous clutter. For MIMO radar, a time-efficient reduced-dimensional clutter suppression algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is proposed to minimize the number of the training samples required for clutter estimation. To deal with highly heterogeneous clutter more effectively, we also proposed a robust deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling jammers in the radar mainlobe direction, an innovative jamming elimination approach is proposed based on coherent MIMO radar adaptive beamforming. When combined with mutual information (MI) based cognitive radar transmit waveform design, this new approach can be used to enable spectrum sharing effectively between radar and wireless communication systems. The proposed interference mitigation approaches are validated by carrying out simulations for typical radar operation scenarios. The advantages of the proposed interference mitigation methods over the existing signal processing techniques are demonstrated both analytically and empirically

    Imaging and Nulling with the Space Interferometry Mission

    Get PDF
    We present numerical simulations for a possible synthesis imaging mode of the Space Interferometer Mission (SIM). We summarize the general techniques that SIM offers to perform imaging of high surface brightness sources, and discuss their strengths and weaknesses. We describe an interactive software package that is used to provide realistic, photometrically correct estimates of SIM performance for various classes of astronomical objects. In particular, we simulate the cases of gaseous disks around black holes in the nuclei of galaxies, and zodiacal dust disks around young stellar objects. Regarding the first, we show that a Keplerian velocity gradient of the line-emitting gaseous disk -- and thus the mass of the putative black hole -- can be determined with SIM to unprecedented accuracy in about 5 hours of integration time for objects with H_alpha surface brigthness comparable to the prototype M 87. Detections and observations of exo-zodiacal dust disks depend critically on the disk properties and the nulling capabilities of SIM. Systems with similar disk size and at least one tenth of the dust content of beta Pic can be detected by SIM at distances between 100 pc and a few kpc, if a nulling efficiency of 1/10000 is achieved. Possible inner clear regions indicative of the presence of massive planets can also be detected and imaged. On the other hand, exo-zodiacal disks with properties more similar to the solar system will not be found in reasonable integration times with SIM.Comment: 28 pages, incl. 8 postscript figures, excl. 10 gif-figures Submitted to Ap
    • …
    corecore