21 research outputs found

    Adaptive Detection of Design Flaws

    Get PDF
    AbstractCriteria for software quality measurement depend on the application area. In large software systems criteria like maintainability, comprehensibility and extensibility play an important role.My aim is to identify design flaws in software systems automatically and thus to avoid “bad” — incomprehensible, hardly expandable and changeable — program structures.Depending on the perception and experience of the searching engineer, design flaws are interpreted in a different way. I propose to combine known methods for finding design flaws on the basis of metrics with machine learning mechanisms, such that design flaw detection is adaptable to different views.This paper presents the underlying method, describes an analysis tool for Java programs and shows results of an initial case study

    Code smells detection and visualization: A systematic literature review

    Full text link
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.Comment: submitted to ARC

    FedCSD: A Federated Learning Based Approach for Code-Smell Detection

    Full text link
    This paper proposes a Federated Learning Code Smell Detection (FedCSD) approach that allows organizations to collaboratively train federated ML models while preserving their data privacy. These assertions have been supported by three experiments that have significantly leveraged three manually validated datasets aimed at detecting and examining different code smell scenarios. In experiment 1, which was concerned with a centralized training experiment, dataset two achieved the lowest accuracy (92.30%) with fewer smells, while datasets one and three achieved the highest accuracy with a slight difference (98.90% and 99.5%, respectively). This was followed by experiment 2, which was concerned with cross-evaluation, where each ML model was trained using one dataset, which was then evaluated over the other two datasets. Results from this experiment show a significant drop in the model's accuracy (lowest accuracy: 63.80\%) where fewer smells exist in the training dataset, which has a noticeable reflection (technical debt) on the model's performance. Finally, the last and third experiments evaluate our approach by splitting the dataset into 10 companies. The ML model was trained on the company's site, then all model-updated weights were transferred to the server. Ultimately, an accuracy of 98.34% was achieved by the global model that has been trained using 10 companies for 100 training rounds. The results reveal a slight difference in the global model's accuracy compared to the highest accuracy of the centralized model, which can be ignored in favour of the global model's comprehensive knowledge, lower training cost, preservation of data privacy, and avoidance of the technical debt problem.Comment: 17 pages, 7 figures, Journal pape

    Code smells detection and visualization: A systematic literature review

    Get PDF
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been cataloged with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches, several methods are used, such as city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non-trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.info:eu-repo/semantics/acceptedVersio

    A Machine-learning Based Ensemble Method For Anti-patterns Detection

    Full text link
    Anti-patterns are poor solutions to recurring design problems. Several empirical studies have highlighted their negative impact on program comprehension, maintainability, as well as fault-proneness. A variety of detection approaches have been proposed to identify their occurrences in source code. However, these approaches can identify only a subset of the occurrences and report large numbers of false positives and misses. Furthermore, a low agreement is generally observed among different approaches. Recent studies have shown the potential of machine-learning models to improve this situation. However, such algorithms require large sets of manually-produced training-data, which often limits their application in practice. In this paper, we present SMAD (SMart Aggregation of Anti-patterns Detectors), a machine-learning based ensemble method to aggregate various anti-patterns detection approaches on the basis of their internal detection rules. Thus, our method uses several detection tools to produce an improved prediction from a reasonable number of training examples. We implemented SMAD for the detection of two well known anti-patterns: God Class and Feature Envy. With the results of our experiments conducted on eight java projects, we show that: (1) our method clearly improves the so aggregated tools; (2) SMAD significantly outperforms other ensemble methods.Comment: Preprint Submitted to Journal of Systems and Software, Elsevie

    A systematic literature review on the code smells datasets and validation mechanisms

    Full text link
    The accuracy reported for code smell-detecting tools varies depending on the dataset used to evaluate the tools. Our survey of 45 existing datasets reveals that the adequacy of a dataset for detecting smells highly depends on relevant properties such as the size, severity level, project types, number of each type of smell, number of smells, and the ratio of smelly to non-smelly samples in the dataset. Most existing datasets support God Class, Long Method, and Feature Envy while six smells in Fowler and Beck's catalog are not supported by any datasets. We conclude that existing datasets suffer from imbalanced samples, lack of supporting severity level, and restriction to Java language.Comment: 34 pages, 10 figures, 12 tables, Accepte
    corecore