10 research outputs found

    Adaptive Concentration Inequalities for Sequential Decision Problems

    Get PDF
    Abstract A key challenge in sequential decision problems is to determine how many samples are needed for an agent to make reliable decisions with good probabilistic guarantees. We introduce Hoeffding-like concentration inequalities that hold for a random, adaptively chosen number of samples. Our inequalities are tight under natural assumptions and can greatly simplify the analysis of common sequential decision problems. In particular, we apply them to sequential hypothesis testing, best arm identification, and sorting. The resulting algorithms rival or exceed the state of the art both theoretically and empirically

    Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals

    Get PDF
    This paper presents new deviation inequalities that are valid uniformly in time under adaptive sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler divergence in a given one-dimensional exponential family, and may take into account several arms at a time. They are obtained by constructing for each arm a mixture martingale based on a hierarchical prior, and by multiplying those martingales. Our deviation inequalities allow us to analyze stopping rules based on generalized likelihood ratios for a large class of sequential identification problems, and to construct tight confidence intervals for some functions of the means of the arms

    Mixture martingales revisited with applications to sequential tests and confidence intervals

    Get PDF
    This paper presents new deviation inequalities that are valid uniformly in time under adaptive sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler divergence in a given one-dimensional exponential family, and take into account multiple arms at a time. They are obtained by constructing for each arm a mixture martingale based on a hierarchical prior, and by multiplying those martingales. Our deviation inequalities allow us to analyze stopping rules based on generalized likelihood ratios for a large class of sequential identification problems. We establish asymptotic optimality of sequential tests generalising the track-and-stop method to problems beyond best arm identification. We further derive sharper stopping thresholds, where the number of arms is replaced by the newly intr
    corecore