141 research outputs found

    Modes of Encryption Secure against Blockwise-Adaptive Chosen-Plaintext Attack

    Get PDF
    Blockwise-adaptive chosen-plaintext and chosen-ciphertext attack are new models for cryptanalytic adversaries, first discovered by Joux, et al [JMV02], and describe a vulnerability in SSH discovered by Bellare, et al [BKN02]. Unlike traditional chosen-plaintext (CPA) or chosen-ciphertext (CCA) adversaries, the blockwise adversary can submit individual blocks for encryption or decryption rather than entire messages. This paper focuses on the search for on-line encryption schemes which are resistant to blockwise-adaptive chosen-plaintext attack. We prove that one oracle query with non-equal inputs is sufficient to win the blockwise-adaptive chosen-plaintext game if the game can be won by any adversary in ppt with non-negligible advantage. In order to uniformly describe such encryption schemes, we define a canonical representation of encryption schemes based on functions believed to be pseudorandom (i.e. Block Ciphers). This Canonical Form is general enough to cover many modes currently in use, including ECB, CBC, CTR, OFB, CFB, ABC, IGE, XCBC, HCBC and HPCBC. An immediate result of the theorems in this paper is that CTR, OFB, CFB, HCBC and HPCBC are proven secure against blockwise-adaptive CPA, as well as S-ABC under certain conditions. Conversely ECB, CBC, IGE, and P-ABC are proven to be blockwise-adaptive CPA insecure. Since CBC, IGE and P-ABC are chosen-plaintext secure, this indicates that the blockwise-adaptive chosen-plaintext model is a non-trivial extension of the traditional chosen-plaintext attack model

    Best Effort and Practice Activation Codes

    Get PDF
    Activation Codes are used in many different digital services and known by many different names including voucher, e-coupon and discount code. In this paper we focus on a specific class of ACs that are short, human-readable, fixed-length and represent value. Even though this class of codes is extensively used there are no general guidelines for the design of Activation Code schemes. We discuss different methods that are used in practice and propose BEPAC, a new Activation Code scheme that provides both authenticity and confidentiality. The small message space of activation codes introduces some problems that are illustrated by an adaptive chosen-plaintext attack (CPA-2) on a general 3-round Feis- tel network of size 2^(2n) . This attack recovers the complete permutation from at most 2^(n+2) plaintext-ciphertext pairs. For this reason, BEPAC is designed in such a way that authenticity and confidentiality are in- dependent properties, i.e. loss of confidentiality does not imply loss of authenticity.Comment: 15 pages, 3 figures, TrustBus 201

    A Type-and-Identity-based Proxy Re-Encryption Scheme and its Application in Healthcare

    Get PDF
    Proxy re-encryption is a cryptographic primitive developed to delegate the decryption right from one party (the delegator) to another (the delegatee). In a proxy re-encryption scheme, the delegator assigns a key to a proxy to re-encrypt all messages encrypted with his public key such that the re-encrypted ciphertexts can be decrypted with the delegatee’s private key. We propose a type-and-identity-based proxy re-encryption scheme based on the Boneh-Franklin Identity Based Encryption (IBE) scheme. In our scheme, the delegator can categorize messages into different types and delegate the decryption right of each type to the delegatee through a proxy. Our scheme enables the delegator to provide the proxy fine-grained re-encryption capability. As an application, we propose a fine-grained Personal Health Record (PHR) disclosure scheme for healthcare service by applying the proposed scheme

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gx∈G1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/x∈G1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    Improved Trace-Driven Cache-Collision Attacks against Embedded AES Implementations

    Get PDF
    In this paper we present two attacks that exploit cache events, which are visible in some side channel, to derive a secret key used in an implementation of AES. The first is an improvement of an adaptive chosen plaintext attack presented at ACISP 2006. The second is a new known plaintext attack that can recover a 128-bit key with approximately 30 measurements to reduce the number of key hypotheses to 2^30. This is comparable to classical Dierential Power Analysis; however, our attacks are able to overcome certain masking techniques. We also show how to deal with unreliable cache event detection in the real-life measurement scenario and present practical explorations on a 32-bit ARM microprocessor

    Multi-key Analysis of Tweakable Even-Mansour with Applications to Minalpher and OPP

    Get PDF
    The tweakable Even-Mansour construction generalizes the conventional Even-Mansour scheme through replacing round keys by strings derived from a master key and a tweak. Besides providing plenty of inherent variability, such a design builds a tweakable block cipher from some lower level primitive. In the present paper, we evaluate the multi-key security of TEM-1, one of the most commonly used one-round tweakable Even-Mansour schemes (formally introduced at CRYPTO 2015), which is constructed from a single n-bit permutation P and a function f(k, t) linear in k from some tweak space to {0, 1} n. Based on giant component theorem in random graph theory, we propose a collision-based multi-key attack on TEM-1 in the known-plaintext setting. Furthermore, inspired by the methodology of Fouque et al. presented at ASIACRYPT 2014, we devise a novel way of detecting collisions and eventually obtain a memory-efficient multi-key attack in the adaptive chosen-plaintext setting. As important applications, we utilize our techniques to analyze the authenticated encryption algorithms Minalpher (a second-round candidate of CAESAR) and OPP (proposed at EUROCRYPT 2016) in the multi-key setting. We describe knownplaintext attacks on Minalpher and OPP without nonce misuse, which enable us to recover almost all O(2n/3) independent masks by making O(2n/3) queries per key and costing O(22n/3) memory overall. After defining appropriate iterated functions and accordingly changing the mode of creating chains, we improve the basic blockwiseadaptive chosen-plaintext attack to make it also applicable for the nonce-respecting setting. While our attacks do not contradict the security proofs of Minalpher and OPP in the classical setting, nor pose an immediate threat to their uses, our results demonstrate their security margins in the multi-user setting should be carefully considered. We emphasize this is the very first third-party analysis on Minalpher and OPP

    Constant-Size Hierarchical Identity-Based Signature/Signcryption without Random Oracles

    Get PDF
    We construct the first constant-size hierarchical identity-based signature (HIBS) without random oracles - the signature size is O(λs)O(\lambda_s) bits, where λs\lambda_s is the security parameter, and it is independent of the number of levels in the hierarchy. We observe that an efficient hierarchical identity-based signcryption (HIBSC) scheme without random oracles can be compositioned from our HIBS and Boneh, Boyen, and Goh\u27s hierarchical identity-based encryption (HIBE). We further optimize it to a constant-factor efficiency improvement. This is the first constant-size HIBSC without random oracles

    Lazy updates in key assignment schemes for hierarchical access control

    Get PDF
    Hierarchical access control policies are used to restrict access to objects by users based on their respective security labels. There are many key assignment schemes in the literature for implementing such policies using cryptographic mechanisms. Updating keys in such schemes has always been problematic, not least because many objects may be encrypted with the same key. We propose a number of techniques by which this process can be improved, making use of the idea of lazy key updates, which have been studied in the context of cryptographic file systems. We demonstrate in passing that schemes for lazy key updates can be regarded as simple instances of key assignment schemes. Finally, we illustrate the utility of our techniques by applying them to hierarchical file systems and to temporal access control policies
    • …
    corecore