1,309 research outputs found

    Pneumatic muscle actuators within robotic and mechatronic systems

    Get PDF

    Natural Motion for Energy Saving in Robotic and Mechatronic Systems

    Get PDF
    Energy saving in robotic and mechatronic systems is becoming an evermore important topic in both industry and academia. One strategy to reduce the energy consumption, especially for cyclic tasks, is exploiting natural motion. We define natural motion as the system response caused by the conversion of potential elastic energy into kinetic energy. This motion can be both a forced response assisted by a motor or a free response. The application of the natural motion concepts allows for energy saving in tasks characterized by repetitive or cyclic motion. This review paper proposes a classification of several approaches to natural motion, starting from the compliant elements and the actuators needed for its implementation. Then several approaches to natural motion are discussed based on the trajectory followed by the system, providing useful information to the researchers dealing with natural motion

    Fast moving of a population of robots through a complex scenario

    Get PDF
    Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied

    New Trends in the Control of Robots and Mechatronic Systems

    Get PDF
    In recent years, research into the control of robotic and mechatronic systems has led to a wide variety of advanced paradigms and techniques, which have been extensively analysed and discussed in the scientific literature [...

    Large scale modeling, model reduction and control design for a real-time mechatronic system

    Get PDF
    Mechatronics is the synergistic integration of the techniques from mechanical engineering, electrical engineering and information technology, which influences each other mutually. As a multidisciplinary domain, mechatronics is more than mechanical or electronics, and the mechatronic systems are always composed of a number of subsystems with various controllers. From this point of view, a lot of such systems can be defined as large scale system. The key element of such systems is integration. Modeling of mechatronic system is a very important step in developing control design of such products, so as to simulate and analyze their dynamic responses for control design, making sure they would meet the desired requirements. The models of large scale systems are always resulted in complex form and high in dimension, making the computation for modeling, simulation and control design become very complicated, or even beyond the solutions provided by conventional engineering methods. Therefore, a simplified model obtained by using model order reduction technique, which can preserve the dominant physical parameters and reveal the performance limiting factor, is preferred. In this dissertation, the research have chosen the two-wheeled self-balancing scooter as the subject of the study in research on large scale mechatronic system, and efforts have been put on developing a completed mathematical modeling method based on a unified framework from varitional method for both mechanical subsystem and electrical subsystem in the scooter. In order to decrease the computation efforts in simulation and control design, Routh model reduction technique was chosen from various model reduction techniques so as to obtain a low dimensional model. Matlab simulation is used to predict the system response based on the simplified model and related control design. Furthermore, the final design parameters were applied in the physical system of two-wheeled self-balancing scooter to test the real performance so as to finish the design evaluation. Conclusion was made based on these results and further research directions can be predicte

    The Project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots: A Tool-box for Research on Intrinsic Motivations and Cumulative Learning

    Get PDF
    The goal of this paper is to furnish a tool-box for research on intrinsic motivations and cumulative learning based on the main ideas produced within the Integrated Project "IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots". IM-CLeVeR is a project funded by the European Commission under the 7th Framework Programme (FP7/2007-2013), \u27\u27Challenge 2 - Cognitive Systems, Interaction, Robotics\u27\u27, grant agreement No. ICTIP- 231722
    • …
    corecore