86 research outputs found

    On the Design of MAC Protocols for Multi-Packet Communication in IEEE 802.11 Heterogeneous Networks Using Adaptive Antenna Arrays

    Get PDF
    This paper discusses the design requirements for enabling multiple simultaneous peer-to-peer communications in IEEE 802.11 asynchronous networks in the presence of adaptive antenna arrays, and proposes two novel access schemes to realize multipacket communication (MPC). Both presented solutions, which rely on the information acquired by each node during the monitoring of the network activity, are suitable for distributed and heterogeneous scenarios, where nodes equipped with different antenna systems can coexist. The first designed scheme, called threshold access MPC (TAMPC), is based on a threshold on the load sustainable by the single-node, while the second protocol, called signal-to-interference ratio (SIR) access MPC (SAMPC), is based on an accurate estimation of the SIR and on the adoption of low density parity check codes. Both protocols, which are designed to be backward compatible with the 802.11 standard, are numerically tested in realistic scenarios. Furthermore, the performance of the two schemes is compared to the theoretical one and to that of the 802.11n extension in a mobile environment

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes

    Get PDF

    Performance analysis and protocol design for multipacket reception in wireless networks.

    Get PDF
    Zheng, Pengxuan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 53-57).Abstracts in English and Chinese.Abstract --- p.iAcknowledgments --- p.vTable of Contents --- p.viList of Figures --- p.viiiList of Tables --- p.ixChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Related Work --- p.2Chapter 1.3 --- Our Contribution --- p.3Chapter 1.4 --- Organization of the Thesis --- p.4Chapter Chapter 2 --- Background Overview --- p.6Chapter 2.1.1 --- Traditional Wireless Networks --- p.6Chapter 2.2 --- Exponential Backoff --- p.7Chapter 2.2.1 --- Introduction --- p.7Chapter 2.2.2 --- Algorithm --- p.8Chapter 2.2.3 --- Assumptions --- p.9Chapter 2.3 --- System Description --- p.9Chapter 2.3.1 --- MPR Capability --- p.9Chapter 2.3.2 --- Backoff Slot --- p.10Chapter 2.3.3 --- Carrier-sensing and Non-carrier-sensing Systems --- p.11Chapter Chapter 3 --- Multipacket Reception in WLAN --- p.12Chapter 3.1 --- MAC Protocol Description --- p.13Chapter 3.2 --- Physical Layer Methodology --- p.16Chapter 3.2.1 --- Blind RTS Separation --- p.17Chapter 3.2.2 --- Data Packet Detection --- p.19Chapter Chapter 4 --- Exponential Backoff with MPR --- p.21Chapter 4.1 --- Analytical Model --- p.22Chapter 4.1.1 --- Markov Model --- p.22Chapter 4.1.2 --- Relations betweenpt andpc --- p.23Chapter 4.2 --- Simulation Settings --- p.26Chapter 4.3 --- Asymptotic Behavior of Exponential Backoff --- p.27Chapter 4.3.1 --- Convergence ofpt andpc --- p.27Chapter 4.3.2 --- Convergence of Npt --- p.29Chapter Chapter 5 --- Non-carrier-sensing System --- p.31Chapter 5.1 --- Performance Analysis --- p.31Chapter 5.1.1 --- Throughput Derivation --- p.31Chapter 5.1.2 --- Throughput Analysis --- p.32Chapter 5.1.3 --- Convergence of S --- p.36Chapter 5.2 --- Infinite Population Model --- p.38Chapter 5.2.1 --- Attempt Rate --- p.38Chapter 5.2.2 --- Asymptotic Throughput of Non-carrier-sensing System --- p.39Chapter Chapter 6 --- Carrier-sensing System --- p.43Chapter 6.1 --- Throughput Derivation --- p.43Chapter 6.2 --- Asymptotic Behavior --- p.44Chapter Chapter 7 --- General MPR Model --- p.48Chapter Chapter 8 --- Conclusions --- p.51Bibliography --- p.5
    • …
    corecore