1,632 research outputs found

    Image registration driven by combined probabilistic and geometric descriptors

    Get PDF
    pre-printDeformable image registration in the presence of considerable contrast dierences and large-scale size and shape changes represents a signicant challenge for image registration. A representative driving application is the study of early brain development in neuroimaging, which requires co-registration of images of the same subject across time or building 4-D population atlases. Growth during the first few years of development involves significant changes in size and shape of anatomical structures but also rapid changes in tissue properties due to myeli-nation and structuring that are reflected in the multi-modal Magnetic Resonance (MR) contrast measurements. We propose a new registration method that generates a mapping between brain anatomies represented as a multi-compartment model of tissue class posterior images and geometries. We transform intensity patterns into combined probabilistic and geometric descriptors that drive the matching in a diffeomorphic framework, where distances between geometries are represented using currents which does not require geometric correspondence. We show preliminary results on the registrations of neonatal brain MRIs to two-year old infant MRIs using class posteriors and surface boundaries of structures undergoing major changes. Quantitative validation demonstrates that our proposed method generates registrations that better preserve the consistency of anatomical structures over time

    A binary level set method based on k-Means for contour tracking on skin cancer images

    Full text link
    A great challenge of research and development activities have recently highlighted in segmenting of the skin cancer images. This paper presents a novel algorithm to improve the segmentation results of level set algorithm with skin cancer images. The major contribution of presented algorithm is to simplify skin cancer images for the computer aided object analysis without loss of significant information and to decrease the required computational cost. The presented algorithm uses k-means clustering technique and explores primitive segmentation to get initial label estimation for level set algorithm. The proposed segmentation method provides better segmentation results as compared to standard level set segmentation technique and modified fuzzy cmeans clustering technique

    Atlas-based Segmentation using a Model of Lesion Growth

    Get PDF
    We propose a method for brain atlas deformation in presence of large space-occupying tumors or lesions, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its central point. Atlas-based methods have been of limited use for segmenting brains that have been drastically altered by the presence of large space-occupying lesions. Our approach involves four steps. First, an affine registration brings the atlas and the patient into global correspondence. Secondly, a local registration warps the atlas onto the patient volume. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery and radiotherapy

    Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the Neonatal Brain

    Get PDF
    journal articleAlthough there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Atlas-Based Segmentation of Pathological Brain MR Images

    Get PDF
    We propose a method for brain atlas deformation in presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed, combining a method derived from optical flow principles and a model of lesion growth (MLG). Results show that the method can be applied to the automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery and radiotherapy

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst
    • …
    corecore