6 research outputs found

    Learning Contextual Bandits in a Non-stationary Environment

    Full text link
    Multi-armed bandit algorithms have become a reference solution for handling the explore/exploit dilemma in recommender systems, and many other important real-world problems, such as display advertisement. However, such algorithms usually assume a stationary reward distribution, which hardly holds in practice as users' preferences are dynamic. This inevitably costs a recommender system consistent suboptimal performance. In this paper, we consider the situation where the underlying distribution of reward remains unchanged over (possibly short) epochs and shifts at unknown time instants. In accordance, we propose a contextual bandit algorithm that detects possible changes of environment based on its reward estimation confidence and updates its arm selection strategy respectively. Rigorous upper regret bound analysis of the proposed algorithm demonstrates its learning effectiveness in such a non-trivial environment. Extensive empirical evaluations on both synthetic and real-world datasets for recommendation confirm its practical utility in a changing environment.Comment: 10 pages, 13 figures, To appear on ACM Special Interest Group on Information Retrieval (SIGIR) 201

    Contextual-Bandit Based Personalized Recommendation with Time-Varying User Interests

    Full text link
    A contextual bandit problem is studied in a highly non-stationary environment, which is ubiquitous in various recommender systems due to the time-varying interests of users. Two models with disjoint and hybrid payoffs are considered to characterize the phenomenon that users' preferences towards different items vary differently over time. In the disjoint payoff model, the reward of playing an arm is determined by an arm-specific preference vector, which is piecewise-stationary with asynchronous and distinct changes across different arms. An efficient learning algorithm that is adaptive to abrupt reward changes is proposed and theoretical regret analysis is provided to show that a sublinear scaling of regret in the time length TT is achieved. The algorithm is further extended to a more general setting with hybrid payoffs where the reward of playing an arm is determined by both an arm-specific preference vector and a joint coefficient vector shared by all arms. Empirical experiments are conducted on real-world datasets to verify the advantages of the proposed learning algorithms against baseline ones in both settings.Comment: Accepted by AAAI 2

    Non-stationary Delayed Combinatorial Semi-Bandit with Causally Related Rewards

    Full text link
    Sequential decision-making under uncertainty is often associated with long feedback delays. Such delays degrade the performance of the learning agent in identifying a subset of arms with the optimal collective reward in the long run. This problem becomes significantly challenging in a non-stationary environment with structural dependencies amongst the reward distributions associated with the arms. Therefore, besides adapting to delays and environmental changes, learning the causal relations alleviates the adverse effects of feedback delay on the decision-making process. We formalize the described setting as a non-stationary and delayed combinatorial semi-bandit problem with causally related rewards. We model the causal relations by a directed graph in a stationary structural equation model. The agent maximizes the long-term average payoff, defined as a linear function of the base arms' rewards. We develop a policy that learns the structural dependencies from delayed feedback and utilizes that to optimize the decision-making while adapting to drifts. We prove a regret bound for the performance of the proposed algorithm. Besides, we evaluate our method via numerical analysis using synthetic and real-world datasets to detect the regions that contribute the most to the spread of Covid-19 in Italy.Comment: 33 pages, 9 figures. arXiv admin note: text overlap with arXiv:2212.1292
    corecore