8 research outputs found

    Adapting the Number of Particles in Sequential Monte Carlo Methods through an Online Scheme for Convergence Assessment

    Full text link
    Particle filters are broadly used to approximate posterior distributions of hidden states in state-space models by means of sets of weighted particles. While the convergence of the filter is guaranteed when the number of particles tends to infinity, the quality of the approximation is usually unknown but strongly dependent on the number of particles. In this paper, we propose a novel method for assessing the convergence of particle filters online manner, as well as a simple scheme for the online adaptation of the number of particles based on the convergence assessment. The method is based on a sequential comparison between the actual observations and their predictive probability distributions approximated by the filter. We provide a rigorous theoretical analysis of the proposed methodology and, as an example of its practical use, we present simulations of a simple algorithm for the dynamic and online adaption of the number of particles during the operation of a particle filter on a stochastic version of the Lorenz system

    Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment

    Get PDF
    Particle filters are broadly used to approximate posterior distributions of hidden states in state-space models by means of sets of weighted particles. While the convergence of the filter is guaranteed when the number of particles tends to infinity, the quality of the approximation is usually unknown but strongly dependent on the number of particles. In this paper, we propose a novel method for assessing the convergence of particle filters in an online manner, as well as a simple scheme for the online adaptation of the number of particles based on the convergence assessment. The method is based on a sequential comparison between the actual observations and their predictive probability distributions approximated by the filter. We provide a rigorous theoretical analysis of the proposed methodology and, as an example of its practical use, we present simulations of a simple algorithm for the dynamic and online adaptation of the number of particles during the operation of a particle filter on a stochastic version of the Lorenz 63 system.This work was supported in part by the Ministerio de Economía y Competitividad of Spain under Grant TEC2013-41718-R OTOSiS, Grant TEC2012-38883-C02-01 COMPREHENSION, and Grant TEC2015-69868-C2-1-R ADVENTURE, in part by the Office of Naval Research Global under Grant N62909-15-1-2011, and in part by the National Science Foundation under Grant CCF-1320626 and Grant CCF-1618999
    corecore