1,036 research outputs found

    Dynamic Bandwidth Allocation in Heterogeneous OFDMA-PONs Featuring Intelligent LTE-A Traffic Queuing

    Get PDF
    This work was supported by the ACCORDANCE project, through the 7th ICT Framework Programme. This is an Accepted Manuscript of an article accepted for publication in Journal of Lightwave Technology following peer review. © 2014 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A heterogeneous, optical/wireless dynamic bandwidth allocation framework is presented, exhibiting intelligent traffic queuing for practically controlling the quality-of-service (QoS) of mobile traffic, backhauled via orthogonal frequency division multiple access–PON (OFDMA-PON) networks. A converged data link layer is presented between long term evolution-advanced (LTE-A) and next-generation passive optical network (NGPON) topologies, extending beyond NGPON2. This is achieved by incorporating in a new protocol design, consistent mapping of LTE-A QCIs and OFDMA-PON queues. Novel inter-ONU algorithms have been developed, based on the distribution of weights to allocate subcarriers to both enhanced node B/optical network units (eNB/ONUs) and residential ONUs, sharing the same infrastructure. A weighted, intra-ONU scheduling mechanism is also introduced to control further the QoS across the network load. The inter and intra-ONU algorithms are both dynamic and adaptive, providing customized solutions to bandwidth allocation for different priority queues at different network traffic loads exhibiting practical fairness in bandwidth distribution. Therefore, middle and low priority packets are not unjustifiably deprived in favor of high priority packets at low network traffic loads. Still the protocol adaptability allows the high priority queues to automatically over perform when the traffic load has increased and the available bandwidth needs to be rationally redistributed. Computer simulations have confirmed that following the application of adaptive weights the fairness index of the new scheme (representing the achieved throughput for each queue), has improved across the traffic load to above 0.9. Packet delay reduction of more than 40ms has been recorded as a result for the low priority queues, while high priories still achieve sufficiently low packet delays in the range of 20 to 30msPeer reviewe

    Energy efficient hybrid satellite terrestrial 5G networks with software defined features

    Get PDF
    In order to improve the manageability and adaptability of future 5G wireless networks, the software orchestration mechanism, named software defined networking (SDN) with Control and User plane (C/U-plane) decoupling, has become one of the most promising key techniques. Based on these features, the hybrid satellite terrestrial network is expected to support flexible and customized resource scheduling for both massive machinetype- communication (MTC) and high-quality multimedia requests while achieving broader global coverage, larger capacity and lower power consumption. In this paper, an end-to-end hybrid satellite terrestrial network is proposed and the performance metrics, e. g., coverage probability, spectral and energy efficiency (SE and EE), are analysed in both sparse networks and ultra-dense networks. The fundamental relationship between SE and EE is investigated, considering the overhead costs, fronthaul of the gateway (GW), density of small cells (SCs) and multiple quality-ofservice (QoS) requirements. Numerical results show that compared with current LTE networks, the hybrid system with C/U split can achieve approximately 40% and 80% EE improvement in sparse and ultra-dense networks respectively, and greatly enhance the coverage. Various resource management schemes, bandwidth allocation methods, and on-off approaches are compared, and the applications of the satellite in future 5G networks with software defined features are proposed

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    Performance Analysis and Optimisation of In-network Caching for Information-Centric Future Internet

    Get PDF
    The rapid development in wireless technologies and multimedia services has radically shifted the major function of the current Internet from host-centric communication to service-oriented content dissemination, resulting a mismatch between the protocol design and the current usage patterns. Motivated by this significant change, Information-Centric Networking (ICN), which has been attracting ever-increasing attention from the communication networks research community, has emerged as a new clean-slate networking paradigm for future Internet. Through identifying and routing data by unified names, ICN aims at providing natural support for efficient information retrieval over the Internet. As a crucial characteristic of ICN, in-network caching enables users to efficiently access popular contents from on-path routers equipped with ubiquitous caches, leading to the enhancement of the service quality and reduction of network loads. Performance analysis and optimisation has been and continues to be key research interests of ICN. This thesis focuses on the development of efficient and accurate analytical models for the performance evaluation of ICN caching and the design of optimal caching management schemes under practical network configurations. This research starts with the proposition of a new analytical model for caching performance under the bursty multimedia traffic. The bursty characteristic is captured and the closed formulas for cache hit ratio are derived. To investigate the impact of topology and heterogeneous caching parameters on the performance, a comprehensive analytical model is developed to gain valuable insight into the caching performance with heterogeneous cache sizes, service intensity and content distribution under arbitrary topology. The accuracy of the proposed models is validated by comparing the analytical results with those obtained from extensive simulation experiments. The analytical models are then used as cost-efficient tools to investigate the key network and content parameters on the performance of caching in ICN. Bursty traffic and heterogeneous caching features have significant influence on the performance of ICN. Therefore, in order to obtain optimal performance results, a caching resource allocation scheme, which leverages the proposed model and targets at minimising the total traffic within the network and improving hit probability at the nodes, is proposed. The performance results reveal that the caching allocation scheme can achieve better caching performance and network resource utilisation than the default homogeneous and random caching allocation strategy. To attain a thorough understanding of the trade-off between the economic aspect and service quality, a cost-aware Quality-of-Service (QoS) optimisation caching mechanism is further designed aiming for cost-efficiency and QoS guarantee in ICN. A cost model is proposed to take into account installation and operation cost of ICN under a realistic ISP network scenario, and a QoS model is presented to formulate the service delay and delay jitter in the presence of heterogeneous service requirements and general probabilistic caching strategy. Numerical results show the effectiveness of the proposed mechanism in achieving better service quality and lower network cost. In this thesis, the proposed analytical models are used to efficiently and accurately evaluate the performance of ICN and investigate the key performance metrics. Leveraging the insights discovered by the analytical models, the proposed caching management schemes are able to optimise and enhance the performance of ICN. To widen the outcomes achieved in the thesis, several interesting yet challenging research directions are pointed out
    corecore