3,004,447 research outputs found
Climate change adaptation: tips for effective information sharing and networking
Climate change adaptation is a multidisciplinary undertaking, requiring collaboration from diverse actors who operate in different sectors. This makes it critical to share information and share it well. Informed by a forum organized by the Global Adaptation Network (GAN) that was attended by nearly one hundred participants, this brief looks at tools, activities, and techniques for effective knowledge sharing through adaptation networks
Exploring adaptation & self-adaptation in autonomic computing systems
This panel paper sets out to discuss what self-adaptation
means, and to explore the extent to which current
autonomic systems exhibit truly self-adaptive behaviour.
Many of the currently cited examples are clearly
adaptive, but debate remains as to what extent they are
simply following prescribed adaptation rules within preset
bounds, and to what extent they have the ability to
truly learn new behaviour. Is there a standard test that
can be applied to differentiate? Is adaptive behaviour
sufficient anyway? Other autonomic computing issues are
also discussed
The effect of climate change adaptation strategies on bean yield in central and northern Uganda
This paper analyses the impact of adaptation to climate change on bean productivity on a micro-scale using instrumental variable techniques in a two-stage econometric model, using data collected from farming households in northern and central Uganda. We employed the bivariate probit technique to model simultaneous and interdependent adoption decisions, and the ordered probit to model the intensity of adaptation. We modelled the impact of adaptation using instrumental variables and the control function approach because of the potential endogeneity of the adaptation decision. The driving forces behind adoption of the two selected adaptation strategies were heterogeneous. Location-specific factors influenced the intensity of adaptation between the two study regions. The effect of adaptation was stronger for households that used a higher number of strategies, evidence that the two adaptation strategies need to be used simultaneously by farmers to maximise the positive impact of adaptation
Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model
Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool
Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model
Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool
The effect of neural adaptation of population coding accuracy
Most neurons in the primary visual cortex initially respond vigorously when a
preferred stimulus is presented, but adapt as stimulation continues. The
functional consequences of adaptation are unclear. Typically a reduction of
firing rate would reduce single neuron accuracy as less spikes are available
for decoding, but it has been suggested that on the population level,
adaptation increases coding accuracy. This question requires careful analysis
as adaptation not only changes the firing rates of neurons, but also the neural
variability and correlations between neurons, which affect coding accuracy as
well. We calculate the coding accuracy using a computational model that
implements two forms of adaptation: spike frequency adaptation and synaptic
adaptation in the form of short-term synaptic plasticity. We find that the net
effect of adaptation is subtle and heterogeneous. Depending on adaptation
mechanism and test stimulus, adaptation can either increase or decrease coding
accuracy. We discuss the neurophysiological and psychophysical implications of
the findings and relate it to published experimental data.Comment: 35 pages, 8 figure
Visual adaptation to thin and fat bodies transfers across identity
Visual perception is highly variable and can be influenced by the surrounding world. Previous research has revealed that body perception can be biased due to adaptation to thin or fat body shapes. The aim of the present study was to show that adaptation to certain body shapes and the resulting perceptual biases transfer across different identities of adaptation and test stimuli. We designed two similar adaptation experiments in which healthy female participants adapted to pictures of either thin or fat bodies and subsequently compared more or less distorted pictures of their own body to their actual body shape. In the first experiment (n = 16) the same identity was used as adaptation and test stimuli (i.e. pictures of the participant’s own body) while in the second experiment (n = 16) we used pictures of unfamiliar thin or fat bodies as adaptation stimuli. We found comparable adaptation effects in both experiments: After adaptation to a thin body, participants rated a thinner than actual body picture to be the most realistic and vice versa. We therefore assume that adaptation to certain body shapes transfers across different identities. These results raise the questions of whether some type of natural adaptation occurs in everyday life. Natural and predominant exposure to certain bodily features like body shape – especially the thin ideal in Western societies – could bias perception for these features. In this regard, further research might shed light on aspects of body dissatisfaction and the development of body image disturbances in terms of eating disorders
- …
