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Visual Memory
Vision in complex environments requires observers not 
only to detect and discriminate stimuli presented si
multaneously, but also to integrate information appro
priately over space and time. One index of this ability 
is short-term memory for visual attributes, such as spa
tial frequency, that resist semantic encoding. Although 
older observers typically perform poorly on tasks that 
involve verbal memory, this age-related loss seems to 
spare memory for visual attributes. Nevertheless, brain 
imaging (positron emission tomography) studies reveal 
that different neural systems are responsible for spatial 
frequency memory in younger and older observers (Mc
Intosh et al., 1997). These differences may reflect com
pensatory neural reorganization within the aging 
brain.
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VISUAL ADAPTATION refers to reversible changes in 
perception caused by visual experience. For example, 
after staring at the downward motion of a waterfall, a 
vivid sensation of upward motion will be perceived 
when looking at a stationary object. Adaptation serves 
a functional role in the visual system by calibrating it 
to prevailing conditions and thus increasing the effi
ciency of visual coding. Insofar as the visual system is 
adapted to “normal” conditions, the visual system can 
be more sensitive to deviations from normality. Visual 
adaptation can be used as a scientific tool to study the 
visual system. For example, after staring at a patch of 
green light, the afterimage you see on a white surface 
will be red. This fact (which has nothing to do with 
physics) tells us about the color-opponency system in 
human vision. There are a variety of visual adapta
tions. This article will discuss four major classes of ad
aptation: dark and light adaptation, visual aftereffects, con
tingent aftereffects, and visuomotor adaptations.

Light and Dark Adaptation
Dark adaptation is the gradual adjustment to darkness 
that one experiences upon entering a darkened room; 
its converse is light adaptation. The process of dark ad
aptation is fairly slow. Thus a well-lit room with moon
light coming through the window may seem extremely 
dark upon first turning out the lights, but after 5 
minutes may seem satisfactorily lit for safe navigation 
by moonlight alone. Full dark adaptation from a very 
bright environment to a very dark one takes about 30 
minutes. Light adaptation, such as occurs when exiting 
a dark theater into a sunny parking lot, is complete 
within about 10 minutes for extreme cases: normal 
transitions take less time.

Light and dark adaptation allow the visual system 
to operate effectively under a large range of light levels. 
The absolute intensity of light reflected by white paper 
in sunlight is i million times greater than that reflected 
by the same paper in moonlight. However, within any 
given environment, the whitest white reflects no more 
than about 30 times the light reflected from the blackest 
black. Since the visual system cannot and needs not 
represent more than about a 100:1 variation, it uses 
dark and light adaptation to adjust its sensitivity to the 
prevailing conditions. (You may have thought this task 
was performed by the pupil of the eye, but the pupil 
can only change the quantity of light entering the eye 
by about a factor of 10.)

There are two receptor types in the human retina.
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VISUAL ADAPTATION. Figure I. Time course of dark 
adaptation is depicted as minimum intensity required 
to detect a point of light after prior exposure to a high- 
intensity light source for several minutes.

Cones are specialized for daytime (photopic) vision and 
only operate under relatively high light levels. Three 
different cone types, with different spectral sensitivities, 
provide access to color information as well as high- 
acuity vision near the center of gaze. Rods, on the other 
hand, are specialized for night (scotopic) vision. Both 
systems show adaptation within the range of intensities 
for which they are suited. Light and dark adaptation 
occur primarily by intrinsic modulation of receptor 
photopigment levels (caused by the “bleaching” of the 
photopigment in response to light), but also by other 
retinal and cortical compensations. The time course of 
dark adaptation is usually measured by determining the 
minimum light needed for contrast detection as a func
tion of time. A graph of the change in threshold is 
shown in Figure i. The “knee” in the graph shows the 
transition point between detection via cones and the 
more sensitive rod system.

Visual Aftereffects
Whereas dark and light adaptation represent a func
tional adjustment to ambient light energy, visual after
effects, such as the waterfall illusion described above, 
represent an adaptation to the visual information pro
vided by means of light. They typically occur for such 
simple visual properties as size, orientation, color, and 
motion, for which neural encoding mechanisms have 
been identified. They also occur in the perception of 
position, depth, texture density, and curvature. A num
ber of simple aftereffects of spatial vision may be expe
rienced with the aid of Figure 2. Most of these effects 
can be described as demonstrating successive contrast: 
the test figure is distorted as if by contrast with the 
adaptation figure.

Visual aftereffects can be measured both by distor

tions of subsequent perceptual experience (e.g., illusory 
upward motion of a static object following adaptation 
to downward motion) and by a reduced sensitivity to 
similar information. This reduced sensitivity is called 
threshold elevation because higher amounts of some spe
cific stimulation than normal are required for the stim
ulation to reach the “threshold” of detection. Adapting 
to an oriented grating, for example, will mean that de
tecting a dim grating of similar orientation later will 
require that the grating be brighter than it would nor
mally need to be to be visible.

It is possible to make inferences about the extent 
to which separate channels of information operate in 
vision by examining the specificity of such threshold 
elevation effects. For example, if I adapt to a grating 
of a particular orientation and then measure my 
thresholds for gratings of different orientations, I will 
find no evidence of threshold elevation for orienta
tions distant from the adapted one. From this I would 
conclude that the process used to detect these distinct 
orientations was not the process adapted. In fact, only 
“near neighbors” of the adapted orientation will be 
affected. Careful analysis of threshold elevations as
sociated with orientation and size adaptation have 
been used to make sophisticated inferences about'the 
characteristics of cortical cells tuned for size and ori
entation.

The perceptual aftereffect associated with adaptation 
to orientation is that “near neighbors” of the adapting 
stimulus will appear to be shifted in orientation away 
from the adapting stimulus. For example, after adap
tation to a grating tilted 15 degrees from vertical, a 
vertical line might appear to be tilted 3 degrees away 
from vertical in the other direction (see Figure 2a). 
Such effects can be understood in terms of population
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VISUAL ADAPTATION. Figure 2. Several aftereffects. A; A negative tilt afteref
fect can be produced by gazing at the ‘A” in the top left panel for about 30 sec
onds. The gratings of the bottom left panel will appear to be tilted inwards at 
the top when gazing at “Ti.” B: Negative aftereffects of size may be produced by 
gazing at “B” for 30 seconds and subsequently inspecting Ti: the bars on the 
left side will appear larger than those on the right. C: Adaptation to the curved 
lines while gazing at the “C” will produce opposite curvature in the straight 
lines while gazing at “T2,” resulting from a combination of a true curvature 
aftereffect and a spatial displacement aftereffect. Adaptation to “D” produces a 
negative aftereffect of texture spacing (density) upon examination of the “T3.”

coding, in which percepts are mediated by activation 
patterns across many neural units. In the case of ori
entation, banks of units sensitive to differently oriented 
patterns exist in the cortex for each local region of the 
retinal input. These detectors are broadly tuned so that 
they also respond to orientations within several degrees 
of their preferred orientation. Adaptation to a partic
ular orientation, such as 15 degrees, reduces respon
siveness of detectors in proportion to their activity dur
ing adaptation. As illustrated in Figure 3, the resulting 
population signal will be skewed away from the adapted 
orientation when a near orientation, such as vertical, 
is presented to the same retinal region. Population cod
ing accounts are favored for tilt, size, depth (binocular 
disparity), and motion aftereffects, for which tuned de
tector systems exist. Similarly, certain figural afteref
fects that produce shape distortions can be understood 
as resulting from aftereffects in the population coding 
of spatial location.

Aftereffects have proven to be a valuable tool for in
vestigating the visual system’s underlying “dimensions” 
of analysis. Chromatic aftereffects, for example, played 
an important role in developing Hering’s opponent pro
cess theory of color vision: The opposition of green and

red in color space is visually demonstrated by the pink 
afterimage obtained when looking at a white surface 
after staring at a green light or object.

The functional significance of color adaptation may 
be to “white-balance” visual input (remove artifactual 
color imbalances). A biological system of information 
transduction must be continually calibrated so it reads 
the world aright. In the very short term, a preponder
ance of a particular signal at a particular location is 
damped by adaptation processes, resulting in a short
term negative aftereffect. In the longer term, adaptation 
can help correct for accidental Imbalances in color sen
sitivity across the retina.

Related functional accounts have been put forward 
for other forms of adaptation. Because the eyes typi
cally change fixation several times each second, the av
erage value of any signal over time at any retinal lo
cation should be the same. If one part of my visual 
field is constantly signaling higher texture densities 
than the rest of my visual field, for example, it is likely 
that my perceptual system needs to be adjusted. In or
der that things appear the same size, orientation, and 
color across the visual field, active calibration of each 
portion of the visual system must occur.
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VISUAL ADAPTATION. Figure 3- Many aftereffects can be understood in terms of population coding, here illustrated for orientation. Each graph represents cell 
activation as a function of preferred orientation. In the top panel the repon 
to a dim 15° grating is illustrated both before (top line) and after (bottom line) 

to . .5- gratiog. In this case the r.spohse has topped below ah,- 
pothetical detection threshold (the horizontal line). The middle panel shows the 
normal response to a vertical (0°) grating and indicates how the adapted re- 
sponse may be subtracted out. The result, depicted in the bottom panel shows 
that the population code now signals an orientation that is shifted to the left o

vertical bv a few degrees.

Contingent Aftereffects
Some aftereffects, known as contingent aftereffects, arise 
in response to the local visual pairing of two different 
kinds of visual information. The classic example was 
that identified by Celeste McCollough in 1965. She 
found that adapting to colored edges in which a partic
ular color was paired with a particular orientation 
could produce orientation-specific color aftereffects. 
Thus, for example, after staring at a grating composed 
of black and green vertical edges presented in alter
nation with one composed of black and red horizontal 
edges, a grating of black and gray edges will thereafter 
appear pinkish when oriented vertically and greenish 
when oriented horizontally. It is difficult to explain con
tingent aftereffects in terms of channel adaptation. 
Rather, these aftereffects appear to be by-products of 
recalibration or learning in the visual system.

Recalibration accounts take several forms. Funda

mentally. they tend to propose that, in the case of the 
McCollough effect, the visual system assumes that ver
tical things should not. in general, be green, and cor
rects for any correlations it finds. In general, contingent 
aftereffects between other dimensions, such as color- 
contingent motion aftereffects, and size-contingent 
color aftereffects, can be treated as cases in which the 
visual system actively reduces correlated signals. An 
important alternative formulation suggests that contin
gent aftereffects may arise as an adaptation to actually 
existing correlations between sensory features so that 
vision can more efficiently code departures from nor
mal correlations. This would explain why a large box 
that weighs 10 pounds feels less heavy than a lo-poun 
lead hall. In the case of contingent color aftereffects, 
this calibratory system could correct for chromatic ab
errations in the optics of the eye (which would nor
mally produce color fringes at luminance boundaries). 
However, such systems might also affect the integration
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of sensory information, as when information about self- 
motion will be correlated with image transformations 
due to the three-dimensional structure of the sur
rounding environment.

Contingent aftereffects are not the product of con
scious experience, because they can be induced under 
various conditions in which the adapting information 
is not perceived including binocular rivalry and certain 
kinds of cortical form blindness. Contingent aftereffects 
are thought by many to be limited to simple visual fea
tures, like those susceptible to aftereffects, though con
flicting reports exist. Contingent aftereffects tend to be 
more long-lasting than simple aftereffects, with dura
tions of days and weeks rather than seconds or 
minutes. Varieties of both kinds of aftereffect have been 
shown to be preserved in strength during periods of 
visual inactivity, suggesting that they are due to active 
visual processes rather than neural fatigue.

Visuomotor Adaptations
These adaptations serve the functional role of calibrat
ing perceptual space and motor space (or simply pro
prioceptive space). The act of reaching for a cup can 
be done rapidly and without thought, although it in
volves coordinating visual knowledge of the cup’s lo
cation with motor knowledge concerning the com
mands necessary to move the appropriate hand to that 
location in space. If the perceived position of the cup 
in space is displaced by introducing a wedge prism in 
front of the eye, the hand will initially reach out to the 
wrong location and a visceral sense of surprise will 
result when the hand comes into view unexpectedly 
displaced. The novel relationship between action and 
vision is rapidly and completely adapted to. This ad
justment results in a compensatory reaching error 
when the prism is first removed.

A variety of optical rearrangements have been stud
ied, including left-right and up-down mirror reversals. 
In all cases, there is a gradual learning process (which 
can be quite rapid in the simple displacement case). 
Although sometimes described as a visual compensa
tion for the optical transformation, such learning is ac
tually specific to the motor systems involved. If correct 
reaching was achieved after several trials with the right 
hand, it might well generalize to all points in space for 
that hand, but it will not generalize to the left hand 
without further feedback concerning that limb. In this 
sense, visuomotor adaptations are regarded as recali
brations of the proprioceptive system responsible for 
maintaining a sense of limb and body position in the 
visual world. Such adaptations only occur if the body 
is actively moved or attended.

In addition to spatial distortions, novel correlations 
between locomotion and visual feedback can concern 
perceived velocity. Simply running on a treadmill, 
which provides none of the visual motion normally as

sociated with forward locomotion, produces a number 
of aftereffects including a visual illusion of increased 
forward motion when walking on solid ground. On one 
view, such visuomotor adaptations are like contingent 
aftereffects in which a visual source of information is 
paired with specific motor signals. Both can be sub
sumed under a recalibration account based on adap
tation to experienced regularities.
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