36,623 research outputs found

    A low variance error boosting algorithm

    Get PDF
    This paper introduces a robust variant of AdaBoost, cw-AdaBoost, that uses weight perturbation to reduce variance error, and is particularly effective when dealing with data sets, such as microarray data, which have large numbers of features and small number of instances. The algorithm is compared with AdaBoost, Arcing and MultiBoost, using twelve gene expression datasets, using 10-fold cross validation. The new algorithm consistently achieves higher classification accuracy over all these datasets. In contrast to other AdaBoost variants, the algorithm is not susceptible to problems when a zero-error base classifier is encountered

    Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification

    Full text link
    The efficacy of particle identification is compared using artificial neutral networks and boosted decision trees. The comparison is performed in the context of the MiniBooNE, an experiment at Fermilab searching for neutrino oscillations. Based on studies of Monte Carlo samples of simulated data, particle identification with boosting algorithms has better performance than that with artificial neural networks for the MiniBooNE experiment. Although the tests in this paper were for one experiment, it is expected that boosting algorithms will find wide application in physics.Comment: 6 pages, 5 figures; Accepted for publication in Nucl. Inst. & Meth.

    Studies of Boosted Decision Trees for MiniBooNE Particle Identification

    Full text link
    Boosted decision trees are applied to particle identification in the MiniBooNE experiment operated at Fermi National Accelerator Laboratory (Fermilab) for neutrino oscillations. Numerous attempts are made to tune the boosted decision trees, to compare performance of various boosting algorithms, and to select input variables for optimal performance.Comment: 28 pages, 22 figures, submitted to Nucl. Inst & Meth.
    corecore