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Abstract. This paper introduces a robust variant of AdaBoost, cw-
AdaBoost, that uses weight perturbation to reduce variance error, and
is particularly effective when dealing with data sets, such as microar-
ray data, which have large numbers of features and small number of
instances. The algorithm is compared with AdaBoost, Arcing and Multi-
Boost, using twelve gene expression datasets, using 10-fold cross valida-
tion. The new algorithm consistently achieves higher classification accu-
racy over all these datasets. In contrast to other AdaBoost variants, the
algorithm is not susceptible to problems when a zero-error base classifier
is encountered.

1 Introduction

This paper introduces a modified version of AdaBoost, cw-AdaBoost, that uses
weight-perturbation to improve performance. In contrast to other AdaBoost vari-
ants, the algorithm does not stop or reset weights if a zero-error classifier is pro-
duced, which allows it to reduce variance further than alternative algorithms, and
makes it more robust than standard boosting algorithms when combined with
“unstable” classifiers such as neural networks or decision trees. The algorithm is
evaluated on a number of challenging data-sets against several alternative vari-
ants, and is shown to have superior performance. The performance is analyzed
by considering the bias/variance decomposition of the classification error rate.

A large number of studies have shown the effectiveness of ensemble learn-
ing algorithms in improving classifier performance. Breiman [9] introduced the
Bagging algorithm, which forms an ensemble by aggregating multiple classifiers,
each of which is trained using a bootstrapped training set (randomly sampled
with replacement from the training set). This approach is very effective in re-
ducing the variance of the ensemble classifier, and is particularly useful if using
“unstable” base classifiers such as decision trees or neural networks [8], that
can produce convoluted decision regions which vary heavily according to the
selection of the training set. In contrast, Freund’s [15] Adaboost ensemble al-
gorithm uses weighted training samples, and the weights are deterministically
updated to emphasize misclassified instances from the training set. This allows
even a relatively simple base classifier algorithm to adjust for complex decision
surfaces, allowing both the bias and the variance to be reduced.

However, Boosting does have some known limitations, including that the de-
terministic sampling does not necessarily optimize the rate of variance reduction,
and issues that occur when zero-error or high error base classifiers are created.
The algorithm introduced in this paper addresses these limitations.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/56038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 C.-W. Wang and A. Hunter

1.1 Related Work

The Boosting algorithm is extremely powerful, and consequently has received a
great deal of attention from the machine learning community, not least in ad-
dressing some of the known limitations. Several authors have attempted to inte-
grate the stochastic element of bagging into a boosting framework. Friedman [17]
proposed a stochastic gradient Boosting, which randomly draws sub-samples of
the training data (without replacement) at each iteration to train individual
base classifiers. The intention of this method is to use the bootstrap sampling
approach of Bagging to improve the variance reduction of Boosting. However,
it leads to a problem that using smaller sub-samples in training base models
causes the variance of the individual base classifiers to increase. Webb [30] pro-
posed a MultiBoost algorithm by combining a modified boosting algorithm with
wagging. MultiBoost wraps Boosting inside Bagging, utilizing the continuous
Poisson distribution to generate a number of randomly weighted (sampled) data
from the original training dataset and then constructs bags of individual en-
sembles, each of which learns by Boosting from the weighted samples (which in
effect provide a randomized weighting start-point for the Boosting algorithm).
A detailed analysis is given in section 2.3.

AdaBoost and its variants typically impose a stopping condition on the base
classifier error rate. If this exceeds 0.5, they stop as the underlying theory only
guarantees decreasing ensemble error performance for base-classifiers with better
than random performance. This stopping criteria may be encountered due to the
distortions introduced by the boosted weighting of some instances. However, they
also stop if the error rate hits zero – this is surprisingly common in problems
with low numbers of instances and large numbers of variables, where it is in fact
still useful to form ensembles to counteract the high variance inherent in such a
data set.

Early stopping of AdaBoost is a form of shrinkage, leading to low gener-
alization and higher variance error. However, early stopping or low generation
problem occur in original AdaBoost Algorithm and its successors. Variants of
AdaBoost that halt under these conditions include MadaBoost by Domingo and
Watanabc [14], LPBoost, TotalBoostv, TotalBoostgv, Brownboost [16], Bag-
Boosting [12], Logitboost [18], AdaBoost∗v and AdaBoostgv by Warmuth et al [29].
Warmuth et al explicitly highlight early stopping as an important issue for future
research.

In the original AdaBoostM1 paper [15], Freund and Schapire pointed out the
main disadvantage of AdaBoostM1 that is unable to handle weak hypotheses
with error greater than 0.5. It halts induction when error is greater than 0.5.
To prevent early stopping, a variant of AdaBoostM1 is proposed by Bauer and
Kohavi [7] to overcome this weakness. If the error is greater than 0.5, this variant
of AdaBoostM1 throws away the base classifier and bootstraps a new sample set
from the original input training set with identical weight 1 for every instance.
It then re-builds a base classifier using the new sample. Although this allows
ensemble building to continue, and may aid with variance reduction, it also
discards the boosted weights which are largely responsible for the bias reduction
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of AdaBoost. The model has another weakness – if one of the base classifiers
achieves zero error rate, boosting stops, and furthermore the error free base
classifier gets infinite voting power and becomes the only voter, turning the
ensemble to a single classifier model.

Webb [30] addressed this latter issue by assigning the voting power of the
error free classifier a specific value, log(1010), and restarting the boosting process
using a new bootstrap sample from the original training set, echoing Bauer and
Kohavi’s approach to high errors. Webb then combines the modified algorithm
with wagging and introduces another boosting algorithm, MultiBoost. However,
these modified algorithms still suffer from low generalization; detailed analysis
is given in section 2.3.

The importance of diversity in the pool of base classifiers has been discussed
in a number of papers [2, 3, 11, 22, 23], showing that ensembles that enforce di-
versity fare better than ones that do not. The motivation of this work is to
investigate a technique to overcome the low generalization problem of boosting
algorithms. We apply the proposed technique to three boosting algorithms: the
original AdaBoostM1, MultiBoost (Boosting without stopping conditions) and
Arcing (Another type of Boosting with stopping conditions), and recommend
the variant with highest performance.

1.2 Motivation

This research was motivated by the investigation of ensemble learning in the
classification of gene expression data, which typically is high dimensional with a
relatively low number of instances. We have observed that popular existing en-
semble methods, including Bagging [9], Boosting (AdaBoostM1) [15] and Arcing
(ArcX4) [8] and MultiBoost [30], encounter specific problems in processing such
data sets which are not necessarily encountered in data sets with lower dimen-
sionality and more samples. In our experiments in the classification of twelve
gene expression data, we found that one or two error free models often dominate
the ensemble. A detailed analysis is presented in section 2.

The main contribution of this research is to introduce a weight perturbation
technique for boosting algorithms that increases the diversity of the base mod-
els, so reducing variance, without damaging the bias performance, and without
allowing early stopping. The algorithm continues to perform, and to improve
performance, when error free classifiers are encountered. The algorithm is also
able to work with “unstable” (i.e. complex) classifiers such as decision trees,
which inherently have relatively low bias, and are less likely to generate high
error rate models than simpler base classifiers dealing with boosted samples.

The algorithm maintains instance weights, like boosting, but it addition to
updating these to emphasize misclassified instances (thus reducing bias), it uses
an efficient resampling technique to perturb the weights – in effect, bootstrap-
ping from the weighted training set. This perturbation reduces variance, and
allows the algorithm to continue successfully even if a zero error base classifier
is encountered.
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We have experimented with modified versions of Boosting, Arcing and Multi-
Boost, generating three modified algorithms (cw-AdaBoost, cw-Arcing and cw-
MultiBoost). In evaluation, these algorithms were compared with Bagging, Boost-
ing, Arcing and MultiBoost, in the classification of 12 gene expression datasets [4–
6, 10, 13, 19, 20, 24, 27, 31, 32] utilizing the 10-fold cross validation technique. The
experimental results show that the modified algorithms achieve significantly bet-
ter performance than the original approaches. The cw-AdaBoost algorithm con-
sistently achieves higher accuracy over 12 gene expression datasets than the
existing algorithms. We have previously briefly introduced this work in [28].

The outline of this paper is as follows. In section 2, four benchmark algo-
rithms (Bagging, Boosting, Arcing and MultiBoost) are described. Section 3
describes the new algorithms and the proposed modification technique, and sec-
tion 4 presents the experimental results. We conclude in section 5. A detailed
presentation of experimental results is given in the appendix.

2 Analyses of Benchmark Ensemble Learning Algorithms

We have benchmarked the algorithm against the original AdaBoostM1, Multi-
Boost (a variant of Boosting that also tries to integrate the advantages of bag-
ging), and Arcing (Another type of boosting without stopping conditions). We
have experimented with variants of each of these algorithms using the new resam-
pling approach, and have also benchmarked against Bagging. The study shows
that the proposed modification improves all of these boosting variants, but that
the simple cw-AdaBoost (AdaBoostM1 integrated with the new sampling algo-
rithm) is most effective.

2.1 Bagging

Bagging [9] forms an ensemble by bootstrapping from the data set to build in-
dividual base classifiers. These are combined using an un-weighted voting mech-
anism, and the classification output is the most often predicted class label. It
is characteristic of Bagging that base models are constructed independently.
In other words, knowledge is not accumulated between iterations: previously
learned experience does not affect the learning process afterwards.

1 Bagging Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N}, a
base learner I and the number of base models to build T, produce the Bagging
classifier C∗(x) by the following steps.
1. for i = 1 to T

1.1. Ś = bootstrap sample from S (i.i.d. sample with replacement)
1.2. build a base model Ci = I(Si)

2. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y 1)

2 Weakness Analysis:
Bagging cannot reduce bias below that of the base classifiers.
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2.2 AdaBoost (AdaBoostM1)

The breakthrough feature of boosting is the sequential development of base clas-
sifiers. The algorithm assigns weights to instances; in particular, the weights of
misclassified instances are increased with each iteration, so that increased at-
tention is paid to correcting mistakes made on previous iterations. The major
difference between Bagging and Boosting is that individual base models in Bag-
ging are built independent to each other whereas base models in Boosting are
adaptively built. Freund and Schapire [15] proposed several extensions of Boost-
ing called adaptive Boosting, including AdaBoost, AdaBoostM1, AdaBoostM2
and AdaBoost.R. In this research, we adopt AdaBoostM1 as the benchmark
Boosting method.

1 AdaBoostM1 Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N}, a
base learner I and the number of base models to build T, produce the Boosting
classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. for i = 1 to T

2.1. build a base model Ci = I(Si)
2.2. Ei = 1

M (
∑

xk∈Si:Ci(xk) 6=yk
wk)

2.3. if (Ei > 0.5) ∨ (Ei = 0), deduct 1 from i and abort loop.
2.4. Bi = Ei

1−Ei

2.5. for each xk ∈ Si, if Ci(xk) 6= yk, then multiply Bi to wk

2.6. Normalize weights
3. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y log 1

Bt
)

2 Weakness Analysis:
AdaBoostM1 terminates when a base classifier with error greater than 0.5, or
equal to 0, is obtained. That is, the Boosting algorithm stops learning when its
performance on the training data is worse than by guessing, or it achieves perfect
performance. In the most extreme case, if the error is zero on the first iteration
then the algorithm constructs a single base classifier; this happens surprisingly
frequently in gene expression data analysis, where the high input dimensionality
and low number of instances often make it possible to achieve perfect perfor-
mance on the training set. In such situations, the Boosting algorithm is unable
to construct an effective ensemble, and its performance is drastically reduced; it
has problems of low generalization and high variance. In addition, AdaBoostM1
does not have any stochastic element, and so although it achieves some variance
reduction by virtue of the diverse ensembles generated, this effect is sometimes
more limited than it might be.

2.3 Modified AdaBoostM1 and MultiBoost

MultiBoost [30] wraps Boosting inside Bagging and generates each bagged en-
semble by Boosting, in order to combine the advantages of Boosting in bias



6 C.-W. Wang and A. Hunter

reduction and Bagging in variance reduction. The adopted boosting algorithm
is an AdaBoostM1 variant [7], which removes the stopping condition when the
error rate is greater than 0.5. Step 2.3 of the original AdaBoostM1 algorithm is
modified to:

Modified AdaBoostM1 by Bauer and Kohavi [7]

2.3.1 If Ei > 0.5, set Si to a bootstrap sample from original S with weight 1
for every instance and go back to step 2.1 to restart building a classifier
(this step is limited to 25 times after which it exits the loop)

2.3.2 If Ei = 0, deduct 1 from i and abort loop

However, there is still early stopping issue in the modified AdaBoostM1 al-
gorithm when an error free base classifier is obtained. Therefore, Webb further
modifies the boosting algorithm to remove the stop conditions when Ei = 0.
When Ei = 0, he assigns the voting power of the base classifier to log(1010),
resets instance weights to random weights using the continuous Poisson distri-
bution, and re-starts the training procedure.

1 MultiBoost Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N},
a base learner I, the number of base models to build T, and a vector of integers
Vj specifying the iteration at which each subcommittee j > 1 should terminate,
produce the MultiBoost classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. set j = 1
3. for i = 1 to T

3.1. if Vj = i,
3.1.1. reset Si to random weights drawn from continuous Poisson distri-

bution.
3.1.2. normalize weights
3.1.3. increment j by 1

3.2. build a base model Ci = I(Si)
3.3. Ei = 1

M (
∑

xk∈Si:Ci(xk) 6=yk
wk)

3.4. if Ei > 0.5,
3.4.1. set Si to random weights drawn from the continuous Poisson dis-

tribution
3.4.2. normalize weights
3.4.3. increment j by 1
3.4.4. go to step 3.2

3.5. if Ei = 0,
3.5.1. set Bi = 10−10

3.5.2. set Si to random weights drawn from the continuous Poisson dis-
tribution

3.5.3. normalize weights
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3.5.4. increment j by 1
3.6. Otherwise,

3.6.1. Bi = Ei

1−Ei

3.6.2. for each xk ∈ Si,
3.6.2.1. if Ci(xk) 6= yk, divide wk by 2Ei

3.6.2.2. otherwise, divide wk by 2(1− Ei)
3.6.2.3. if wk < 10−8, set wk to 10−8

4. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y log 1
Bt

)

2 Weakness Analysis:
There are two problems with this design: first, the algorithm discards previously
learned knowledge (in the form of Boosting weights) and restarts the training
procedure from scratch even when it has obtained a zero error on the input train-
ing data; second, the algorithm sets Bi to 10−10 when an error free base model
is obtained. The latter seriously affects the performance of the ensemble model,
damaging its generalization performance, as such base classifiers dominate the
ensemble. This drawback is apparent in our experimental results, showing that
the algorithm performs very poorly in some of the datasets, such as “colon tu-
mor” and “prostate outcome.”

Table 1. MultiBoost Performance with different Bi

iteration 10 20 30 40

ProstateOutcome

MultiBoost(Bi = 10−10) 57.14 76.19 71.43 76.19
MultiBoost(Bi = 10−8) 52.38 76.19 71.43 76.19
cw-AdaBoost 100.00 100.00 95.24 95.24

BreastCancer

MultiBoost(Bi = 10−10) 83.51 86.60 87.63 91.75
MultiBoost(Bi = 10−8) 85.57 86.60 89.69 91.75
cw-AdaBoost 90.72 95.88 95.88 95.88

ColonTumor

MultiBoost(Bi = 10−10) 80.65 79.03 79.03 79.03
MultiBoost(Bi = 10−8) 80.65 79.03 79.03 79.03
cw-AdaBoost 93.55 93.55 93.55 91.94

Furthermore, resetting the weights on each iteration of Bagging discards the
knowledge on weight setting gained during Boosting. We can expect each run
of Boosting to converge back towards approximately the same weights, but the
procedure is time-consuming. The experimental results are consistent with our
theory and show that MultiBoost improves more slowly than our new algorithms.
Fig 1 shows the results on one gene expression dataset, i.e. Breast Cancer, and
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illustrates the faster convergence of cw-AdaBoost and cw-Arcing. In addition,
we evaluate the performance of MultiBoost, which sets Bi to a bigger value 10−8

when Ei = 0 to assign smaller decision power to error free classifiers. The aim
is to investigate if the performance of MultiBoost can be improved. However,
there is no clear improvement by changing Bi value when Ei = 0. The results
are displayed in Table 1.

Fig. 1. Fast convergence of cw-AdaBoost and cw-Arcing

2.4 Arcing

There are two types of Arcing, i.e. Arc-fs using weighted voting and arcX4 using
un-weighted voting. In this paper, we adopt arcX4 because the arcX4 algorithm
is suggested to have a slight edge in test set error results [8] on smaller datasets,
and the experimental datasets in this research tend to have fewer instances.
The framework of Arcing is similar to the one employed in Boosting. They
both proceed in sequentially self-adjusting steps. However, there are three major
differences between Arcing and Boosting: (1) Arcing does not employ a stop
condition; (2) Arcing adopts an un-weighted voting system; (3) Arcing adapts its
behavior based on the accumulation {Ek} of its faults in history and examines all
previous base classifiers’ faults when constructing a new base classifier, whereas
Boosting considers only the error of the previous iteration’s base classifier.

1 Arcing Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N},
a base learner I and the number of base models to build T, produce the Arcing
classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
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2. Create a vector {Ek} where Ek = 0 and k = 1 . . .M

3. for i = 1 to T
3.1. build a base model Ci = I(Si)
3.2. for each xk ∈ Si, if Ci(xk) 6= yk, add 1 to Ek and set wk = 1 + Ek

4

3.3. Normalize weights
4. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y 1)

2 Weakness Analysis:
A drawback of Arcing is its deteriorating performance and the decreasing diver-
sity of base models as more base models are built. Once a base classifier exactly
fits the training dataset, there will be no change in the accumulated misclassifi-
cation values {Ek}, and hence all instances’ weights remain the same in building
the next base model, due to the re-weighting function (wk = 1 + Ek

4). Thus,
Arcing will continuously produce identical base models once an error-free clas-
sifier is built. In the worst case, Arcing may generate a basket of identical base
classifiers. In other cases, after an error free base classifier is trained, Arcing will
continuously produce identical base models until the maximum number of base
models are built. Consequently, the diversity of base models of Arcing gradually
decreases after that point. Our experimental results show that the accuracy of
the entire Arcing model deteriorates once this happens.

3 Proposed Modification: cw-resampling

Boosting halts induction when the optimization problem becomes infeasible
[14] [29]. Bauer and Kohavi [7] and Freund and Schapire [15] addressed the
early stopping issue, but left open the question of iteration bounds for future
research. Although Webb [30] and Breiman [8] introduced the modified boosting
algorithms, MultiBoost and Arcing, to address stopping conditions issues, these
modified boosting algorithms still suffer from generalization issues, as discussed
above.

The proposed modification focuses on the optimization of boosting to reduce
variance, and on preventing the algorithms from failing when error free classifiers
occur. We therefore specify three key requirements of the proposed modification.

1 Key Requirements of the Proposed Modification

First, instead of stopping, the algorithm should be able to continue optimiza-
tion and build more classifiers when an error free model is obtained. Second, the
algorithm should be able to utilize the knowledge accumulated during sequen-
tial learning. In other words, when Ei = 0, the ensemble does not reset weights
or restart from a bootstrapped set, which throws away the knowledge learned.
Third, the decision of an ideal ensemble model should depend on a number
of non-identical mature decision makers with low error rate rather than a few
decision makers.
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2 Design

The proposed model uses a weight perturbation approach to effectively re-
sample around the weightings produced by boosting. This allows the algorithm
to continue adding base classifiers even if a zero base classifier is discovered,
and indeed to perform bias removal (by intermittent boosting steps) in this cir-
cumstance. Furthermore, for robustness, the decision power of base classifiers is
based on their error rate rather than a fixed value. This allows boosting mod-
els to benefit from variance reduction and alleviates the overfitting problem.
An illustration of the proposed design in comparison with the existing boosting
algorithms is presented in Fig 2.

Fig. 2. Illustration of the proposed design and low generalization issues of existing
boosting methods: If C13 is an error free classifier, boosting methods in the first group
will produce only 13 classifiers no matter how large the number of base models origi-
nally specified, and as C13 gains infinite decision power, the decision of these ensembles
is dominated by one base classifier; boosting methods in the second group assign consid-
erably high decision power to the two error free models, C13, C15, and thus the decision
is dominated by these two base classifiers; boosting methods in the third group con-
tinuously produce identical classifiers C13, and the decision of such ensemble models
is dominated by this one classifier; the proposed structure generate diverse classifiers
and an effective ensemble with 30 different and 18 mature decision makers.

2 Implementation

First, before training each base classifier we alter the instance weights using
the random resampling approach for weighted instances described below; sec-
ond, provided the base classifier performance is not zero we update the weights
using a boosting approach. Thus, even if the base classifier has error zero, the
algorithm continues to produce diverse classifiers. The weight perturbation al-
gorithm injects some randomness into the learning behavior, without wholly
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discarding the knowledge built up in previous iterations of boosting. It effec-
tively bootstraps a new training set by sampling from the weighted training set
generated on the previous iteration (i.e. it uses the instance weights to influence
the selection frequency in bootstrapping). It thus keeps the sequential adaptive
learning strengths of boosting, while injecting randomness to generate diverse
classifiers and improve performance where boosting would fail.

Importantly, the standard “fairly sampling” technique as used by AdaBoost [7]
and Bagging is not suitable here. The standard sampling technique resets every
instance’s weight to 1 and then samples with replacement. This throws away
all knowledge learned, and re-starts learning from the beginning, which loses
the virtue of boosting algorithms. An extreme example is MultiBoost, which re-
sets weights both periodically and whenever εi > 0.5∨εi = 0.5. Under situations
without error free base models obtained, MultiBoost has slower convergence and
poorer performance than the new variant, with less than 40 base classifiers, as
shown in Fig 1.

Fig. 3. Re-sampling Scheme

The weight perturbing algorithm is computationally efficient, with time com-
plexity O(n). It uses an array of cumulative weight bins, s, and an array of
cumulative random numbers, g, normalized to the same final sum. The new
weights are assigned according to the number of random values associated with
the corresponding bin; see fig 3. This is equivalent to producing the new weights
by weighted resampling with replacement but has optimal time complexity. The
new algorithms (cw-AdaBoost, cw-Arcing and cw-MultiBoost) and the weight
perturbing algorithm (cw-Resample) are presented below.

3.1 cw-AdaBoost Algorithm

Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N}, a
base learner I, the number of base models to build T, and an integer R (maximum
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number of times to perturb data; in experiments we use R=10), produce the cw-
AdaBoost classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. for i = 1 to T

2.1. set r = 0
2.2. perturb Si using cw-Resample
2.3. build a base model Ci = I(Si)
2.4. increment r by 1
2.5. Ei = 1

M (
∑

xk∈Si:Ci(xk) 6=yk
wk)

2.6. if (Ei = 0) ∧ (r ≤ R), go to step 2.2.
2.7. if (Ei > 0.5) ∨ (Ei = 0), deduct 1 from i and abort loop.
2.8. Bi = Ei

1−Ei

2.9. for each xk ∈ Si, if Ci(xk) 6= yk, then multiply Bi to wk

2.10. Normalize weights
3. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y log 1

Bt
)

3.2 cw-Arcing Algorithm

Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N}, a
base learner I, the number of base models to build T, and an integer R (maximum
number of times to perturb data; in experiments we use R=10), produce the cw-
Arcing classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. Create a vector {Ek} where Ek = 0 and k = 1 . . .M
3. for i = 1 to T

3.1. set r = 0
3.2. perturb Si using cw-Resample
3.3. build a base model Ci = I(Si)
3.4. increment r by 1
3.5. Ei = 1

M (
∑

xk∈Si:Ci(xk) 6=yk
wk)

3.6. if (Ei = 0) ∧ (r ≤ R), go to step 3.2.
3.7. for each xk ∈ Si, if Ci(xk) 6= yk,

3.7.1 add 1 to Ek

3.7.2 wk = 1 + E4
k

3.8. Normalize weights
4. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y 1)

3.3 cw-MultiBoost

Given a training set S : (x1, y1), . . . , (xM , yM ) with labels yj ∈ Y = {1, . . . N},
a base learner I, the number of base models to build T, a vector of integers Vj

specifying the iteration at which each subcommittee j > 1 should terminate,
and an integer R (maximum number of times to perturb data; in experiments
we use R=10), produce the MultiBoost classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
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2. set j = 1
3. for i = 1 to T

3.1. set r = 0
3.2. perturb Si using cw-Resample
3.3. build a base model Ci = I(Si)
3.4. increment r by 1
3.5. Ei = 1

M (
∑

xk∈Si:Ci(xk) 6=yk
wk)

3.6. if (Ei = 0) ∧ (r ≤ R), go to step 3.2
3.7. if (Ei > 0.5) ∨ (Ei = 0), deduct 1 from i and abort loop
3.8. Bi = Ei

1−Ei

3.9. if Vj = i,
3.9.1. reset Si to random weights drawn from continuous Poisson distri-

bution.
3.9.2. normalize weights
3.9.3. increment j by 1

3.10. otherwise,
3.10.1. for each xk ∈ Si, if Ci(xk) 6= yk, multiply Bi to wk

3.10.2. normalize weights
4. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y log 1

Bt
)

3.4 cw-Resample Algorithm

Given a dataset S: a sequence of instances with weights:(i1, w1), . . . , (iM , wM ),
we produce new dataset with the following steps.
1. Generate M random number: r1, . . . , rM

2. R =
∑

j=1...M rj

3. W =
∑

j=1...M wj

4. set a = 1 and b = 1
5. let g(a) = (

∑
j=1...a

rj

R )×M
6. let s(b) = (

∑
j=1...b wj

7. if (a > M) ∧ (b > M), then terminate.
8. if g(a) < s(b),

8.1. select instance ib into the output dataset
8.2. increment a by 1
8.3. go to step 5

9. otherwise,
9.1. increment b by 1
9.2. go to step 5

4 Experiments

The experiments are conducted using 12 published gene expression datasets
[4–6, 10, 13, 19, 20, 24, 27, 31, 32], which are obtained from [26]. Details of the
data cleaning process are given in the original paper. In evaluation, Ambroise
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and McLachlan [1] recommend using 10-fold rather than leave-one-out cross-
validation for gene expression data analysis. In this research, 10-fold cross val-
idation is utilized and C4.5 decision tree algorithm [25] is used as the base
classifier. Furthermore, to investigate the influence of the number of base mod-
els used, we evaluate the classification accuracy of the ensembles with different
numbers of base classifiers (from 10 to 70 classifiers in steps of 10). The exper-
imental results show that the modified algorithms all perform better than the
corresponding original algorithms. The cw-AdaBoost algorithm consistently per-
forms best over all 12 gene expression datasets, and is our recommended variant.
In order to compare the performances of the seven algorithms on 12 datasets

Table 2. 10-fold Cross Validation Accuracy% for single dataset(Breast Cancer)

base classifiers 10 20 30 40 50 60 70 Pm

Bagging 85.57 85.57 88.66 88.66 90.72 90.72 89.69 -0.71
Arcing 82.47 80.41 80.41 80.41 80.41 80.41 80.41 -8.52
Boosting 81.44 84.54 84.54 84.54 84.54 85.57 85.57 -4.83
MultiBoost 83.51 86.60 87.63 91.75 93.81 93.81 95.88 1.20
cw-Arcing 89.69 91.75 93.81 93.81 94.84 94.84 95.88 4.29
cw-AdaBoost 90.72 95.88 95.88 95.88 94.84 93.81 98.97 5.91
cw-MultiBoost 90.72 87.63 89.69 91.75 91.75 95.88 95.88 2.67

Average Ei 86.30 87.48 88.66 89.54 90.13 90.72 91.75

with different number of iterations, we first generate the cross validated average
accuracy Ei of the algorithms on a specific iteration number i, to represent the
average performance of 7 algorithms with iteration i. Given Ai(m) is 10-fold
cross validation accuracy of the algorithm m with iteration i, Ei = Ai(m)/7.
We then create a performance index Pm to compare the relative performance of
the algorithm m. (Pm = (

∑
i=10,20,..,70(Ai(m)− Ei))/7.) Table 2 illustrates the

performance index on a single dataset, and Table 3 displays the relative perfor-
mance indices Pm on 12 gene expression datasets, showing that the new methods
(particularly cw-AdaBoost, which has the best results for nine datasets, and the
second best for two others) obtain consistently high performance index values.

Using the Wilcoxon signed rank test to compare the performance of cw-
AdaBoost with cs-Arcing (the second best algorithm), we obtain the Wilcoxon
statistic W=52 with N=12 samples, yielding the z-value 2.02 > 1.96, and there-
fore conclude that the performance is significantly better at the 97.5% one-sided
confidence level. Stronger results are obtained in comparing cw-AdaBoost with
the algorithms, so that we conclude that cw-AdaBoost has superior performance.
(The 10-fold cross validation results on the other 11 datasets are presented in
the Appendix.)

A distinctive feature of gene expression data is that error free base model can
be generated, causing the low generalization issue discussed above. The results



Applied Intelligence, Springer Netherlands, Published online: 21 Feb 2009 15

Table 3. Performance Index Pm on 12 Gene Expression Datasets

AMLALL Brain Breast CNS Colon DLBCLt

Bagging -1.39 -1.22 -0.71 -0.34 -5.73 -1.83
Arcing -7.14 -2.37 -8.52 -9.63 -1.12 -7.77
Boosting -4.36 -4.08 -4.83 1.56 6.02 1.14
MultiBoost 3.37 -0.37 1.20 -0.82 -7.11 1.51
cw-Arcing 3.37 2.49 4.29 3.23 8.10 1.69
cw-AdaBoost 3.17 4.49 5.91 5.13 6.26 2.99
cw-MultiBoost 2.98 1.06 2.67 4.42 -6.42 2.25

Lung DLBCLo Prostateo MLLLeukemia Prostatet Subtype

Bagging -0.72 -4.27 -15.86 -2.88 -0.94 0.61
Arcing -0.72 -9.20 -3.61 -1.87 -1.18 -6.56
Boosting -0.17 -2.20 -6.33 -0.87 -0.05 1.57
MultiBoost 1.02 0.90 -5.65 -1.47 -1.99 0.78
cw-Arcing 0.94 5.09 12.04 0.32 2.45 0.17
cw-AdaBoost 1.49 5.33 18.84 4.28 1.72 1.75
cw-MultiBoost 1.17 4.34 12.72 2.49 -0.62 1.66

are consistent with our theories, which are: (1) arcing keeps producing identical
base models after an error free base model is built, and therefore the diversity
of base models of arcing deteriorates. Thus, the variance error increases after-
wards; (2) the stopping condition of boosting terminates further constructions
of base classifiers and prevents further reduction of the variance error; (3) the
performance of the multiboost is adversely affected by assigning log 1010 to the
decision power of an error free base model, leading to a small number of error
free base classifiers domaining the decision output.

4.1 Variance and Bias

In this section we present an analysis of the bias and variance of the algorithms,
using the breast cancer dataset, and Kohavi and Wolpert’s [21] approach to
variance and bias decomposition.

There are 97 instances with 835 attributes in the original breast cancer data
set D. Utilizing Kohavi and Wolpert’s approach [21], a sample of size 40 without
replacement from the original data D is taken to produce a training set source.
From the remainder, a test set of size 40 is sampled without replacement. There
are 50 training samples to produce 50 trained ensemble models, which are then
applied to the test set, and the bias and variance are calculated from the pre-
dictions on the test set.

Fig 4 tabulates the experimental results on the bias, variance and error of
the ensemble models. Fig 5 illustrates the differences in the performance of the
original algorithms and the modified method. In general, the results show that
the modified algorithms perform well on both bias and variance reduction. The
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Fig. 4. Bias2, V ariance and Error .
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Fig. 5. Comparison on Bias2, V ariance and Error between the original algorithms
and the algorithms with the proposed modifications.
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top row, which compares bagging, boosting and the new algorithm show that,
for this data set, boosting and bagging have equal performance on variance, but
as expected boosting has lower bias. The cw-AdaBoost algorithm matches this
low bias, and is able to continue boosting, further reducing the bias. The cw-
AdaBoost algorithm also has noticeably lower variance than either boosting or
bagging, indicating that the weight perturbation approach is highly effective. The
second row show that the standard arcing algorithm deteriorates after around 30
iterations, at which point it keeps producing identical base models after an error
free base model is built, leading to growing variance error. Boosting similarly
stops improving after about 50 iterations. MultiBoost restarts learning every
10 iterations, and so it benefits from variance reduction in comparison to the
original Boosting algorithm, but converges slowly; the proposed modification
cw-MultiBoost variant achieves faster variance reduction.

5 Conclusion

This paper has introduced modifications to three boosting methods to gener-
ate efficient boosting models for training high dimensional datasets with low
numbers of instances. Training this type of dataset (particularly with unstable
base classifiers like decision tree) tends to generate error free base models and
causes malfunctions on conventional Boosting, Arcing, and MultiBoost, leading
to low generalization. The modified algorithms, which use a weight perturbation
method combined with sequential update, and discards the stopping condition,
allows ensemble generation to continue, further lowering variance. We have intro-
duced the cw-AdaBoost algorithm, which demonstrates superior performance on
12 gene expression data where it performs consistently well. We thus recommend
it for wider use.
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iteration 10 20 30 40 50 60 70

ProstateOutcome

Bagging 66.67 61.90 61.90 61.90 61.90 61.90 61.90
Arcing 66.67 76.19 76.19 80.95 80.95 71.43 71.43
Boosting 76.19 71.43 71.43 71.43 71.43 71.43 71.43
MultiBoost 57.14 76.19 71.43 76.19 76.19 76.19 76.19
cw-Arcing 90.48 95.24 90.48 90.48 90.48 85.71 90.48
cw-AdaBoost 100.00 100.00 95.24 95.24 100.00 95.24 95.24
cw-MultiBoost 80.95 95.24 95.24 85.71 95.24 95.24 90.48

AMLALL

Bagging 91.67 94.44 94.44 95.83 95.83 94.44 95.83
Arcing 88.89 88.89 88.89 88.89 88.89 88.89 88.89
Boosting 91.67 91.67 91.67 91.67 91.67 91.67 91.67
MultiBoost 95.83 100.00 100.00 100.00 100.00 100.00 100.00
cw-Arcing 98.61 100.00 98.61 100.00 100.00 100.00 98.61
cw-AdaBoost 100.00 98.61 98.61 98.61 98.61 100.00 100.00
cw-MultiBoost 97.22 100.00 98.61 100.00 98.61 100.00 98.61

Brain Tumor

Bagging 86.00 88.00 86.00 84.00 86.00 82.00 82.00
Arcing 82.00 84.00 84.00 84.00 84.00 84.00 84.00
Boosting 80.00 84.00 82.00 82.00 82.00 82.00 82.00
MultiBoost 72.00 82.00 88.00 88.00 88.00 90.00 92.00
cw-Arcng 82.00 86.00 90.00 90.00 92.00 90.00 90.00
cw-AdaBoost 88.00 92.00 92.00 88.00 92.00 90.00 92.00
cw-MultiBoost 80.00 84.00 92.00 90.00 88.00 88.00 88.00

ColonTumor

Bagging 82.26 82.26 79.03 79.03 80.65 80.65 80.65
Arcing 91.94 85.48 83.87 83.87 83.87 83.87 83.87
Boosting 90.32 90.32 91.94 93.54 93.54 93.54 93.54
MultiBoost 80.65 79.03 79.03 79.03 79.03 79.03 79.03
cw-Arcing 96.77 93.55 91.94 93.55 93.55 95.16 96.77
cw-AdaBoost 93.55 93.55 93.55 91.94 91.94 91.94 91.94
cw-MultiBoost 80.65 80.65 85.48 74.19 79.03 79.03 80.65
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DLBCLTumor

Bagging 93.51 92.21 92.21 92.21 92.21 92.21 92.21
Arcing 92.21 84.42 85.71 85.71 85.71 85.71 85.71
Boosting 96.10 96.10 96.10 94.81 94.81 94.81 94.81
MultiBoost 92.21 94.81 97.40 97.40 96.10 96.10 96.10
cw-Arcing 90.90 96.10 97.40 94.81 97.40 97.40 97.40
cw-AdaBoost 92.20 97.40 97.40 98.70 97.40 98.70 98.70
cw-MultiBoost 93.51 96.10 96.10 96.10 98.70 97.40 97.40

DLBCLOutcome

Bagging 79.31 87.93 89.66 94.83 91.38 93.10 94.83
Arcing 86.21 86.21 86.21 84.48 84.48 84.48 84.48
Boosting 89.66 89.66 93.81 93.10 93.10 93.10 93.10
MultiBoost 84.48 94.83 96.55 96.55 98.28 98.28 98.28
cw-Arcing 98.28 98.28 100.00 100.00 100.00 100.00 100.00
cw-AdaBoost 100.00 100.00 100.00 100.00 100.00 100.00 98.28
cw-MultiBoost 91.34 100.00 100.00 100.00 100.00 100.00 100.00

Lung Cancer

Bagging 97.24 97.24 97.24 97.24 97.24 97.24 97.24
Arcing 97.24 97.24 97.24 97.24 97.24 97.24 97.24
Boosting 97.79 97.79 97.79 97.79 97.79 97.79 97.79
MultiBoost 97.79 98.90 98.90 98.90 99.45 99.45 99.45
cw-Arcing 98.90 98.90 99.45 99.45 98.90 98.34 98.34
cw-AdaBoost 99.45 99.45 99.45 99.45 99.45 99.45 99.45
cw-MultiBoost 97.79 98.90 99.45 99.45 99.45 99.45 99.45

MLLLeukemia

Bagging 90.23 90.23 90.23 91.67 91.67 91.67 91.67
Arcing 91.67 93.06 93.06 91.67 91.67 91.67 91.67
Boosting 93.06 93.06 93.06 93.06 93.06 93.06 93.06
MultiBoost 93.06 93.04 91.67 93.06 93.06 91.67 91.67
cw-Arcing 95.84 95.84 95.84 93.06 93.06 93.06 93.06
cw-AdaBoost 95.84 100.00 95.83 98.61 100.00 98.61 98.61
cw-MultiBoost 91.67 94.44 98.61 95.83 97.22 98.61 98.61

CNS

Bagging 88.33 88.33 86.67 88.33 86.67 86.67 88.33
Arcing 78.33 78.33 78.33 78.33 78.33 78.33 78.33
Boosting 88.33 88.33 90.00 90.00 90.00 90.00 90.00
MultiBoost 85.00 86.67 85.00 86.67 86.67 90.00 90.00
cw-Arcing 86.67 91.67 93.33 91.67 91.67 91.67 91.67
cw-AdaBoost 91.67 91.67 95.00 93.33 93.33 93.33 93.33
cw-MultiBoost 93.33 88.33 91.67 93.33 93.33 93.33 93.33
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ProstateTumor

Bagging 94.92 95.48 95.48 95.48 94.92 94.92 94.92
Arcing 94.92 94.92 94.92 94.92 94.92 94.92 94.92
Boosting 96.05 96.05 96.05 96.05 96.05 96.05 96.05
MultiBoost 88.24 94.12 94.85 95.59 95.59 95.59 94.85
cw-Arcing 98.87 98.31 98.31 98.31 98.31 98.87 98.87
cw-AdaBoost 97.74 97.74 98.31 97.18 97.74 97.74 98.31
cw-MultiBoost 93.38 94.85 96.32 95.59 95.59 97.06 95.59

SubtypeALL

Bagging 89.91 91.13 91.13 91.13 90.83 91.13 91.13
Arcing 88.07 89.91 85.63 81.65 80.73 80.12 80.12
Boosting 89.30 92.05 92.97 92.05 91.74 92.66 92.35
MultiBoost 86.85 88.99 91.44 92.35 92.66 92.66 92.66
cw-Arcing 89.30 90.21 89.91 90.83 91.13 91.13 90.83
cw-AdaBoost 90.21 92.05 92.66 92.05 92.05 92.35 92.97
cw-MultiBoost 88.07 92.35 92.05 92.05 92.35 93.58 93.27


