1,559 research outputs found

    Vertex arboricity of triangle-free graphs

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2016The vertex arboricity of a graph is the minimum number of colors needed to color the vertices so that the subgraph induced by each color class is a forest. In other words, the vertex arboricity of a graph is the fewest number of colors required in order to color a graph such that every cycle has at least two colors. Although not standard, we will refer to vertex arboricity simply as arboricity. In this paper, we discuss properties of chromatic number and k-defective chromatic number and how those properties relate to the arboricity of trianglefree graphs. In particular, we find bounds on the minimum order of a graph having arboricity three. Equivalently, we consider the largest possible vertex arboricity of triangle-free graphs of fixed order

    Acyclic edge coloring of graphs

    Full text link
    An {\em acyclic edge coloring} of a graph GG is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The {\em acyclic chromatic index} \chiup_{a}'(G) of a graph GG is the least number of colors needed in an acyclic edge coloring of GG. Fiam\v{c}\'{i}k (1978) conjectured that \chiup_{a}'(G) \leq \Delta(G) + 2, where Ξ”(G)\Delta(G) is the maximum degree of GG. This conjecture is well known as Acyclic Edge Coloring Conjecture (AECC). A graph GG with maximum degree at most ΞΊ\kappa is {\em ΞΊ\kappa-deletion-minimal} if \chiup_{a}'(G) > \kappa and \chiup_{a}'(H) \leq \kappa for every proper subgraph HH of GG. The purpose of this paper is to provide many structural lemmas on ΞΊ\kappa-deletion-minimal graphs. By using the structural lemmas, we firstly prove that AECC is true for the graphs with maximum average degree less than four (\autoref{NMAD4}). We secondly prove that AECC is true for the planar graphs without triangles adjacent to cycles of length at most four, with an additional condition that every 55-cycle has at most three edges contained in triangles (\autoref{NoAdjacent}), from which we can conclude some known results as corollaries. We thirdly prove that every planar graph GG without intersecting triangles satisfies \chiup_{a}'(G) \leq \Delta(G) + 3 (\autoref{NoIntersect}). Finally, we consider one extreme case and prove it: if GG is a graph with Ξ”(G)β‰₯3\Delta(G) \geq 3 and all the 3+3^{+}-vertices are independent, then \chiup_{a}'(G) = \Delta(G). We hope the structural lemmas will shed some light on the acyclic edge coloring problems.Comment: 19 page

    Improved bounds on coloring of graphs

    Full text link
    Given a graph GG with maximum degree Ξ”β‰₯3\Delta\ge 3, we prove that the acyclic edge chromatic number aβ€²(G)a'(G) of GG is such that aβ€²(G)β‰€βŒˆ9.62(Ξ”βˆ’1)βŒ‰a'(G)\le\lceil 9.62 (\Delta-1)\rceil. Moreover we prove that: aβ€²(G)β‰€βŒˆ6.42(Ξ”βˆ’1)βŒ‰a'(G)\le \lceil 6.42(\Delta-1)\rceil if GG has girth gβ‰₯5 g\ge 5\,; a'(G)\le \lceil5.77 (\Delta-1)\rc if GG has girth gβ‰₯7g\ge 7; a'(G)\le \lc4.52(\D-1)\rc if gβ‰₯53g\ge 53; a'(G)\le \D+2\, if g\ge \lceil25.84\D\log\D(1+ 4.1/\log\D)\rceil. We further prove that the acyclic (vertex) chromatic number a(G)a(G) of GG is such that a(G)\le \lc 6.59 \Delta^{4/3}+3.3\D\rc. We also prove that the star-chromatic number Ο‡s(G)\chi_s(G) of GG is such that \chi_s(G)\le \lc4.34\Delta^{3/2}+ 1.5\D\rc. We finally prove that the \b-frugal chromatic number \chi^\b(G) of GG is such that \chi^\b(G)\le \lc\max\{k_1(\b)\D,\; k_2(\b){\D^{1+1/\b}/ (\b!)^{1/\b}}\}\rc, where k_1(\b) and k_2(\b) are decreasing functions of \b such that k_1(\b)\in[4, 6] and k_2(\b)\in[2,5]. To obtain these results we use an improved version of the Lov\'asz Local Lemma due to Bissacot, Fern\'andez, Procacci and Scoppola \cite{BFPS}.Comment: Introduction revised. Added references. Corrected typos. Proof of Theorem 2 (items c-f) written in more detail

    Two novel evolutionary formulations of the graph coloring problem

    Full text link
    We introduce two novel evolutionary formulations of the problem of coloring the nodes of a graph. The first formulation is based on the relationship that exists between a graph's chromatic number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The second formulation, unlike the first one, does not tackle one graph at a time, but rather aims at evolving a `program' to color all graphs belonging to a class whose members all have the same number of nodes and other common attributes. The heuristics that result from these formulations have been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and have been found to be competitive when compared to the several other heuristics that have also been tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio
    • …
    corecore