7 research outputs found

    Activity Recognition using a Hierarchical Framework

    Get PDF
    This paper describes an approach for modelling and detecting activities of daily life based on a hierarchy of plans that contain a range of precedence relationships, representations of concurrency and other temporal relationships. Identification of activities of daily life is achieved by episode recovery models supported by using relationships expressed in the plans. The motivation is to allow people with Alzheimer’s disease to have additional years of independent living before the Alzheimer’s disease reaches the moderate and severe stages

    Activity Recognition using a Hierarchical Framework

    Full text link

    Activity recognition using a hierarchical framework

    Full text link

    A Framework to Recognise Daily Life Activities with Wireless Proximity and Object Usage Data

    Get PDF
    The profusion of wireless enabled mobile devices in daily life routine and advancement in pervasive computing has opened new horizons to analyse and model the contextual information. This contextual information (for example, proximity data and location information) can be very helpful in analysing the human behaviours. Wireless proximity data can provide important information about the behaviour and daily life routines of an individual. In this paper, we used Bluetooth proximity data to validate this concept by detecting repeated activity patterns and behaviour of low entropy mobile people by using n-gram and correlative matrix techniques. Primary purpose is to find out whether contextual information obtained from Bluetooth proximity data is useful for activities and behaviour detection of individuals. Repeated patterns found in Bluetooth proximity data can also show the long term routines such as, monthly or yearly patterns in an individual's daily life that can further help to analyse more complex and abnormal routines of human behaviour

    Behavioural Patterns Analysis of Low Entropy People Using Proximity Data

    Get PDF
    Over the years, wireless enabled mobile devices have become an important part of our daily activities that can provide rich contextual information about the location and environment of an individual (for example who is in your proximity? and where are you?). Advancement in technology has opened several horizons to analyse and model this contextual information for human behaviour understanding. Objective of this research work is to utilise this information from wireless proximity data to find repeated patterns in daily life activities and individual behaviours. These repeated patterns can give information about the unusual activities and behaviour of an individual. To validate and further investigate this concept, we used Bluetooth proximity data in this paper. Repeated activity patterns and behaviour of low entropy mobile people are detected by using two different techniques, N-gram and correlative matrix techniques. Primary purpose was to find out whether contextual information obtained from Bluetooth proximity data is useful for activities and behaviour detection of individuals. Results have shown that these repeated patterns not only show short term daily routines but can also show the long term routines such as, monthly or yearly patterns in an individual’s daily life that can further help to analyse more complex and abnormal routines of human behaviour

    A hierarchal framework for recognising activities of daily life

    Get PDF
    PhDIn today’s working world the elderly who are dependent can sometimes be neglected by society. Statistically, after toddlers it is the elderly who are observed to have higher accident rates while performing everyday activities. Alzheimer’s disease is one of the major impairments that elderly people suffer from, and leads to the elderly person not being able to live an independent life due to forgetfulness. One way to support elderly people who aspire to live an independent life and remain safe in their home is to find out what activities the elderly person is carrying out at a given time and provide appropriate assistance or institute safeguards. The aim of this research is to create improved methods to identify tasks related to activities of daily life and determine a person’s current intentions and so reason about that person’s future intentions. A novel hierarchal framework has been developed, which recognises sensor events and maps them to significant activities and intentions. As privacy is becoming a growing concern, the monitoring of an individual’s behaviour can be seen as intrusive. Hence, the monitoring is based around using simple non intrusive sensors and tags on everyday objects that are used to perform daily activities around the home. Specifically there is no use of any cameras or visual surveillance equipment, though the techniques developed are still relevant in such a situation. Models for task recognition and plan recognition have been developed and tested on scenarios where the plans can be interwoven. Potential targets are people in the first stages of Alzheimer’s disease and in the structuring of the library of kernel plan sequences, typical routines used to sustain meaningful activity have been used. Evaluations have been carried out using volunteers conducting activities of daily life in an experimental home environment. The results generated from the sensors have been interpreted and analysis of developed algorithms has been made. The outcomes and findings of these experiments demonstrate that the developed hierarchal framework is capable of carrying activity recognition as well as being able to carry out intention analysis, e.g. predicting what activity they are most likely to carry out next

    Contrôle intelligent de la domotique à partir d'informations temporelles multi sources imprécises et incertaines

    Get PDF
    La Maison Intelligente est une résidence équipée de technologie informatique qui assiste ses habitant dans les situations diverses de la vie domestique en essayant de gérer de manière optimale leur confort et leur sécurité par action sur la maison. La détection des situations anormales est un des points essentiels d'un système de surveillance à domicile. Ces situations peuvent être détectées en analysant les primitives générées par les étages de traitement audio et par les capteurs de l'appartement. Par exemple, la détection de cris et de bruits sourds (chute d'un objet lourd) dans un intervalle de temps réduit permet d'inférer l'occurrence d'une chute. Le but des travaux de cette thèse est la réalisation d'un contrôleur intelligent relié à tous les périphériques de la maison capable de réagir aux demandes de l'habitant (par commande vocale) et de reconnaître des situations à risque ou détresse. Pour accomplir cet objectif, il est nécessaire de représenter formellement et raisonner sur des informations, le plus souvent temporelles, à des niveaux d'abstraction différents. Le principale défi est le traitement de l'incertitude, l'imprécision, et incomplétude, qui caractérisent les informations dans ce domaine d'application. Par ailleurs, les décisions prises par le contrôleur doivent tenir compte du contexte dans lequel une ordre est donné, ce qui nous place dans l'informatique sensible au contexte. Le contexte est composé des informations de haut niveau tels que la localisation, l'activité en cours de réalisation, la période de la journée. Les recherches présentées dans ce manuscrit peuvent être divisés principalement en trois axes: la réalisation des méthodes d'inférence pour acquérir les informations du contexte(notamment, la localisation de l'habitant y l'activité en cours) à partir des informations incertains, la représentation des connaissances sur l'environnement et les situations à risque, et finalement la prise de décision à partir des informations contextuelles. La dernière partie du manuscrit expose les résultats de la validation des méthodes proposées par des évaluations amenées à la plateforme expérimental Domus.A smart home is a residence featuring ambient intelligence technologies in order to help its dwellers in different situations of common life by trying to manage their comfort and security through the execution of actions over the effectors of the house. Detection of abnormal situations is paramount in the development of surveillance systems. These situations can be detected by the analysis of the traces resulting from audio processing and the data provided by the network of sensors installed in the smart home. For instance, detection of cries along with thuds(fall of a heavy object) in a short time interval can help to infer that the resident has fallen. The goal of the research presented in this thesis is the implementation of an intelligence controller connected with the devices in the house that is able to react to user's commands(through vocal interfaces) and recognize dangerous situations. In order to fulfill this goal, it is necessary to create formal representation and to develop reasoning mechanism over informations that are often temporal and having different levels of abstraction. The main challenge is the processing the uncertainty, imprecision, and incompleteness that characterise this domain of application. Moreover, the decisions taken by the intelligent controller must consider the context in which a user command is given, so this work is made in the area of Context Aware Computing. Context includes high level information such as the location of the dweller, the activity she is making, and the time of the day. The research works presented in this thesis can be divided mainly in three parts: the implementation of inference methods to obtain context information(namely, location and activity) from uncertain information, knowledge representation about the environment and dangerous situations, and finally the development of decision making models that use the inferred context information. The last part of this thesis shows the results from the validation of the proposed methods through experiments performed in an experimental platform, the Domus apartment.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore