4 research outputs found

    Enhanced context-aware framework for individual and crowd condition prediction

    Get PDF
    Context-aware framework is basic context-aware that utilizes contexts such as user with their individual activities, location and time, which are hidden information derived from smartphone sensors. These data are used to monitor a situation in a crowd scenario. Its application using embedded sensors has the potential to monitor tasks that are practically complicated to access. Inaccuracies observed in the individual activity recognition (IAR) due to faulty accelerometer data and data classification problem have led to its inefficiency when used for prediction. This study developed a solution to this problem by introducing a method of feature extraction and selection, which provides a higher accuracy by selecting only the relevant features and minimizing false negative rate (FNR) of IAR used for crowd condition prediction. The approach used was the enhanced context-aware framework (EHCAF) for the prediction of human movement activities during an emergency. Three new methods to ensure high accuracy and low FNR were introduced. Firstly, an improved statistical-based time-frequency domain (SBTFD) representing and extracting hidden context information from sensor signals with improved accuracy was introduced. Secondly, a feature selection method (FSM) to achieve improved accuracy with statistical-based time-frequency domain (SBTFD) and low false negative rate was used. Finally, a method for individual behaviour estimation (IBE) and crowd condition prediction in which the threshold and crowd density determination (CDD) was developed and used, achieved a low false negative rate. The approach showed that the individual behaviour estimation used the best selected features, flow velocity estimation and direction to determine the disparity value of individual abnormality behaviour in a crowd. These were used for individual and crowd density determination evaluation in terms of inflow, outflow and crowd turbulence during an emergency. Classifiers were used to confirm features ability to differentiate individual activity recognition data class. Experimenting SBTFD with decision tree (J48) classifier produced a maximum of 99:2% accuracy and 3:3% false negative rate. The individual classes were classified based on 7 best features, which produced a reduction in dimension, increased accuracy to 99:1% and had a low false negative rate (FNR) of 2:8%. In conclusion, the enhanced context-aware framework that was developed in this research proved to be a viable solution for individual and crowd condition prediction in our society

    Activity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for Mobile Navigation Application

    No full text
    Low-cost inertial and motion sensors embedded on smartphones have provided a new platform for dynamic activity pattern inference. In this research, a comparison has been conducted on different sensor data, feature spaces and feature selection methods to increase the efficiency and reduce the computation cost of activity recognition on the smartphones. We evaluated a variety of feature spaces and a number of classification algorithms from the area of Machine Learning, including Naive Bayes, Decision Trees, Artificial Neural Networks and Support Vector Machine classifiers. A smartphone app that performs activity recognition is being developed to collect data and send them to a server for activity recognition. Using extensive experiments, the performance of various feature spaces has been evaluated. The results showed that the Bayesian Network classifier yields recognition accuracy of 96.21% using four features while requiring fewer computations

    Nutzerzentrierte Indoor-Positionierung fĂŒr smartphonegestĂŒtzte FußgĂ€ngernavigation

    Get PDF
    ZuverlĂ€ssige Positionsbestimmung ist eine wichtige Voraussetzung fĂŒr Navigationssysteme, um am richtigen Ort und zur richtigen Zeit Assistenz leisten zu können. Im Gegensatz zu satellitengestĂŒtzter Positionierung in Außenbereichen existiert innerhalb von GebĂ€uden keine Ă€hnlich ubiquitĂ€r verfĂŒgbare Technologie. Diese Arbeit handelt von der Entwicklung eines Indoor-Positionierungssystems fĂŒr smartphonebasierte FußgĂ€ngernavigation, mit speziellem Fokus auf der BerĂŒcksichtigung von realem Nutzerverhalten. Aufbauend auf dem Stand der Technik wird zunĂ€chst ein Basis-Positionierungssystem entwickelt, welches mithilfe eines Partikelfilters die Benutzerposition innerhalb eines graphbasierten Umgebungsmodells bestimmt. In zwei Vorstudien erfolgt anschließend unter kontrollierten Bedingungen die Evaluation der grundlegenden FunktionalitĂ€t sowie mehrerer Erweiterungen zur Anpassung an Benutzereigenschaften. Parallel dazu werden mithilfe der Campus-Navigations-App URwalking Nutzungsdaten erhoben, um das fĂŒr die Positionsbestimmung relevante Navigationsverhalten der BenutzerInnen unter realistischen Bedingungen zu untersuchen. Die Merkmale der abgerufenen Routen erlauben RĂŒckschlĂŒsse auf die wĂ€hrend der Navigation zu erwartenden BenutzeraktivitĂ€ten. Eine Studie an einer heuristisch gefilterten Untermenge des Datensatzes (N = 351) gibt unter anderem Aufschluss ĂŒber vorherrschende GerĂ€tepositionen sowie ĂŒber Pausen und Unterbrechungen im Navigationsvorgang. Basierend auf diesen Erkenntnissen wird ein Datensatz erhoben, welcher Sensordaten fĂŒr eine Vielzahl von navigationsrelevanten AktivitĂ€ten und GerĂ€tepositionen enthĂ€lt. Dieser wiederum dient als Grundlage fĂŒr das Training von Deep-Learning-Modellen zur AktivitĂ€tserkennung. Nach Integration der AktivitĂ€tserkennungskomponente in das Basissystem wird die Positionierungsgenauigkeit wĂ€hrend eines Navigationstasks auf einer fĂŒr den realen Betrieb reprĂ€sentativen Route in einer abschließenden Studie (N = 69) untersucht. Durch geschickte Nutzung der AktivitĂ€tsinformationen und gezielte BerĂŒcksichtigung menschlichen Verhaltens wĂ€hrend der Navigation bleibt die Positionsverfolgung hier auch ohne externe Infrastruktur lĂ€ngerfristig stabil
    corecore