134,736 research outputs found

    Toward an efficient solution for dynamic ad hoc network interoperability

    Get PDF
    An ad hoc network is formed by an impromptu grouping of network capable nodes. The nodes forming the network have unconstrained mobility, and so provide a dynamic network topology. Current work in this research area has focused on designing routing protocols capable of efficiently forwarding packets in these dynamic network environments. This has led to several designs for ad hoc routing protocols based on various routing algorithms, each suited to specific usage characteristics. This paper will discuss issues relating to routing in ad hoc networks. We will describe an active networking based solution that provides dynamic routing protocol interoperability and enables migration of nodes between ad hoc groups. Our design is motivated by a squad and base scenario which consists of two groups wishing to communicate. These groups have contrasting deployment characteristics and so use different routing protocols

    Active routing service for the next-generation network/ISDN3

    Get PDF
    In recent years, a new routing method, known as active routing, has been emerging. This involves using active packets to configure customized network paths. Based on a Markov decision model, this paper presents an active routing service for active networks in general and the next generation network, called ISDN3, in particular. Our aim is to determine the active routing policy so as to minimize the network cost. Theoretical analysis is presented to show the advantages of our proposal as compared with three other approaches.published_or_final_versio

    MARVELO: Wireless Virtual Network Embedding for Overlay Graphs with Loops

    Full text link
    When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.Comment: 6 page

    AODVSEC: A Novel Approach to Secure Ad Hoc on-Demand Distance Vector (AODV) Routing Protocol from Insider Attacks in MANETs

    Full text link
    Mobile Ad hoc Network (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without requiring any fixed based-station infrastructure and centralized management. Each node in the network acts as both a host and a router. In such scenario, designing of an efficient, reliable and secure routing protocol has been a major challenging issue over the last many years. Numerous schemes have been proposed for secure routing protocols and most of the research work has so far focused on providing security for routing using cryptography. In this paper, we propose a novel approach to secure Ad hoc On-demand Distance Vector (AODV) routing protocol from the insider attacks launched through active forging of its Route Reply (RREP) control message. AODV routing protocol does not have any security provision that makes it less reliable in publicly open ad hoc network. To deal with the concerned security attacks, we have proposed AODV Security Extension (AODVSEC) which enhances the scope of AODV for the security provision. We have compared AODVSEC with AODV and Secure AODV (SAODV) in normal situation as well as in presence of the three concerned attacks viz. Resource Consumption (RC) attack, Route Disturb (RD) attack, Route Invasion (RI) attack and Blackhole (BH) attack. To evaluate the performances, we have considered Packet Delivery Fraction (PDF), Average End-to-End Delay (AED), Average Throughput (AT), Normalized Routing Load (NRL) and Average Jitter and Accumulated Average Processing Time.Comment: 20 Pages, 24 Figure

    A two-step approach to restorable dynamic QoS routing

    Get PDF
    Aiming at minimizing the combined bandwidth cost of a pair of disjoint active and backup paths, a popular approach to designing Restorable Dynamic QoS Routing schemes is based on Integer Linear Programming (ILP) formulation. Owing to the very different natures of active and backup paths, we found this approach problematic. In this paper, we propose a simple alternative approach, called two-step routing. In the first step, active path is found using the widest-shortest path (WSP) routing. In the second step, the corresponding backup path is determined using one of the three variants of shortest-widest path (SWP) routing, Basic-SWP, Approximate-SWP and Composite-SWP. Combining both steps, three novel restorable routing algorithms, SBW, SAW and SCW, are obtained. Comparing with the existing best-known algorithms, we show that our two-step routing approach yields noticeably lower call blocking probability, shorter active path length, and adjustable backup path length (depending on the SWP variant adopted). Besides, our two-step routing approach gives a much shorter running time than the ILP approach, which makes it more attractive for dynamic routing.published_or_final_versio
    • …
    corecore