4,250 research outputs found

    Learning to Prevent Monocular SLAM Failure using Reinforcement Learning

    Full text link
    Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with trajectory planning frameworks is particularly challenging. This paper presents a novel formulation based on Reinforcement Learning (RL) that generates fail safe trajectories wherein the SLAM generated outputs do not deviate largely from their true values. Quintessentially, the RL framework successfully learns the otherwise complex relation between perceptual inputs and motor actions and uses this knowledge to generate trajectories that do not cause failure of SLAM. We show systematically in simulations how the quality of the SLAM dramatically improves when trajectories are computed using RL. Our method scales effectively across Monocular SLAM frameworks in both simulation and in real world experiments with a mobile robot.Comment: Accepted at the 11th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 2018 More info can be found at the project page at https://robotics.iiit.ac.in/people/vignesh.prasad/SLAMSafePlanner.html and the supplementary video can be found at https://www.youtube.com/watch?v=420QmM_Z8v

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    Perception-aware Path Planning

    Full text link
    In this paper, we give a double twist to the problem of planning under uncertainty. State-of-the-art planners seek to minimize the localization uncertainty by only considering the geometric structure of the scene. In this paper, we argue that motion planning for vision-controlled robots should be perception aware in that the robot should also favor texture-rich areas to minimize the localization uncertainty during a goal-reaching task. Thus, we describe how to optimally incorporate the photometric information (i.e., texture) of the scene, in addition to the the geometric one, to compute the uncertainty of vision-based localization during path planning. To avoid the caveats of feature-based localization systems (i.e., dependence on feature type and user-defined thresholds), we use dense, direct methods. This allows us to compute the localization uncertainty directly from the intensity values of every pixel in the image. We also describe how to compute trajectories online, considering also scenarios with no prior knowledge about the map. The proposed framework is general and can easily be adapted to different robotic platforms and scenarios. The effectiveness of our approach is demonstrated with extensive experiments in both simulated and real-world environments using a vision-controlled micro aerial vehicle.Comment: 16 pages, 20 figures, revised version. Conditionally accepted for IEEE Transactions on Robotic
    • …
    corecore