109,362 research outputs found

    Learning in Unlabelled Networks – An Active Learning and Inference Approach

    Get PDF
    The task of determining labels of all network nodes based on the knowledge about network structure and labels of some training subset of nodes is called the within-network classification. It may happen that none of the labels of the nodes is known and additionally there is no information about number of classes to which nodes can be assigned. In such a case a subset of nodes has to be selected for initial label acquisition. The question that arises is: "labels of which nodes should be collected and used for learning in order to provide the best classification accuracy for the whole network?". Active learning and inference is a practical framework to study this problem. A set of methods for active learning and inference for within network classification is proposed and validated. The utility score calculation for each node based on network structure is the first step in the process. The scores enable to rank the nodes. Based on the ranking, a set of nodes, for which the labels are acquired, is selected (e.g. by taking top or bottom N from the ranking). The new measure-neighbour methods proposed in the paper suggest not obtaining labels of nodes from the ranking but rather acquiring labels of their neighbours. The paper examines 29 distinct formulations of utility score and selection methods reporting their impact on the results of two collective classification algorithms: Iterative Classification Algorithm and Loopy Belief Propagation. We advocate that the accuracy of presented methods depends on the structural properties of the examined network. We claim that measure-neighbour methods will work better than the regular methods for networks with higher clustering coefficient and worse than regular methods for networks with low clustering coefficient. According to our hypothesis, based on clustering coefficient we are able to recommend appropriate active learning and inference method

    Active Discovery of Network Roles for Predicting the Classes of Network Nodes

    Full text link
    Nodes in real world networks often have class labels, or underlying attributes, that are related to the way in which they connect to other nodes. Sometimes this relationship is simple, for instance nodes of the same class are may be more likely to be connected. In other cases, however, this is not true, and the way that nodes link in a network exhibits a different, more complex relationship to their attributes. Here, we consider networks in which we know how the nodes are connected, but we do not know the class labels of the nodes or how class labels relate to the network links. We wish to identify the best subset of nodes to label in order to learn this relationship between node attributes and network links. We can then use this discovered relationship to accurately predict the class labels of the rest of the network nodes. We present a model that identifies groups of nodes with similar link patterns, which we call network roles, using a generative blockmodel. The model then predicts labels by learning the mapping from network roles to class labels using a maximum margin classifier. We choose a subset of nodes to label according to an iterative margin-based active learning strategy. By integrating the discovery of network roles with the classifier optimisation, the active learning process can adapt the network roles to better represent the network for node classification. We demonstrate the model by exploring a selection of real world networks, including a marine food web and a network of English words. We show that, in contrast to other network classifiers, this model achieves good classification accuracy for a range of networks with different relationships between class labels and network links
    • …
    corecore