514,587 research outputs found
Reinforcement learning or active inference?
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain
Optimal inference with suboptimal models:Addiction and active Bayesian inference
When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent's beliefs - based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment - as opposed to the agent's beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less 'optimally' than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject's generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described 'limited offer' task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work
Learning perception and planning with deep active inference
Active inference is a process theory of the brain that states that all living organisms infer actions in order to minimize their (expected) free energy. However, current experiments are limited to predefined, often discrete, state spaces. In this paper we use recent advances in deep learning to learn the state space and approximate the necessary probability distributions to engage in active inference
Active Topology Inference using Network Coding
Our goal is to infer the topology of a network when (i) we can send probes
between sources and receivers at the edge of the network and (ii) intermediate
nodes can perform simple network coding operations, i.e., additions. Our key
intuition is that network coding introduces topology-dependent correlation in
the observations at the receivers, which can be exploited to infer the
topology. For undirected tree topologies, we design hierarchical clustering
algorithms, building on our prior work. For directed acyclic graphs (DAGs),
first we decompose the topology into a number of two-source, two-receiver
(2-by-2) subnetwork components and then we merge these components to
reconstruct the topology. Our approach for DAGs builds on prior work on
tomography, and improves upon it by employing network coding to accurately
distinguish among all different 2-by-2 components. We evaluate our algorithms
through simulation of a number of realistic topologies and compare them to
active tomographic techniques without network coding. We also make connections
between our approach and alternatives, including passive inference, traceroute,
and packet marking
Active inference, evidence accumulation, and the urn task
Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology
- …
