28,706 research outputs found

    Bounded Quantifier Instantiation for Checking Inductive Invariants

    Full text link
    We consider the problem of checking whether a proposed invariant φ\varphi expressed in first-order logic with quantifier alternation is inductive, i.e. preserved by a piece of code. While the problem is undecidable, modern SMT solvers can sometimes solve it automatically. However, they employ powerful quantifier instantiation methods that may diverge, especially when φ\varphi is not preserved. A notable difficulty arises due to counterexamples of infinite size. This paper studies Bounded-Horizon instantiation, a natural method for guaranteeing the termination of SMT solvers. The method bounds the depth of terms used in the quantifier instantiation process. We show that this method is surprisingly powerful for checking quantified invariants in uninterpreted domains. Furthermore, by producing partial models it can help the user diagnose the case when φ\varphi is not inductive, especially when the underlying reason is the existence of infinite counterexamples. Our main technical result is that Bounded-Horizon is at least as powerful as instrumentation, which is a manual method to guarantee convergence of the solver by modifying the program so that it admits a purely universal invariant. We show that with a bound of 1 we can simulate a natural class of instrumentations, without the need to modify the code and in a fully automatic way. We also report on a prototype implementation on top of Z3, which we used to verify several examples by Bounded-Horizon of bound 1

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed
    corecore