1,460 research outputs found

    A Service Restoration Method for Active Distribution Network

    Get PDF
    AbstractFor a large scale of distributed generations being connected to the power distribution network, the traditional service restoration methods cannot meet the demand of the distributed generation's large access which facing significant challenges. Service restoration of active distribution network (ADN) is a multi-objective, multiple-constraint, and complex optimization problem. Considering the user priority level, the load amounts restored, the counts of switch operation, the network loss after the power restoration, and the operation of power sources, this article establishes a restoration model based on grid actual situation, which is more realistic for the ADN. As a different dimension of different objective, this article proposes the generalized model in order to compare those solutions conveniently, the paper uses genetic algorithm to get recovery scheme. Results of case study show that the proposed model is effective

    Analytical Approach for Active Distribution Network Restoration Including Optimal Voltage Regulation

    Full text link
    The ever increasing utilization of sensitive loads in the industrial, commercial and residential areas in distribution networks requires enhanced reliability and quality of supply. This can be achieved thanks to self healing features of smart grids that already include the control technologies necessary for the restoration strategy in case of a fault. In this paper, an analytical and global optimization model is proposed for the restoration problem. A novel mathematical formulation is presented for the reconfiguration problem reducing the number of required binary variables while covering more practical scenarios compared to the existing models. The considered self healing actions besides the network reconfiguration are the nodal load rejection, the tap setting modification of voltage regulation devices (incl. OLTCs, SVR, and CBs), and the active or reactive power dispatch of DGs. The voltage dependency of loads is also considered. Thus, the proposed optimization problem determines the most efficient restoration plan minimizing the number of deenergized nodes with the minimum number of self healing actions. The problem is formulated as a Mixed Integer Second Order Cone Programming (MISOCP) and solved using the Gurobi solver via the MATLAB interface YALMIP. A real 83 node distribution network is used to test and verify the presented methodology

    ICT Technologies, Standards and Protocols for Active Distribution Network Automation and Management

    Get PDF
    The concept of active distribution network (ADN) is evolved to address the high penetration of renewables in the distribution network. To leverage the benefits of ADN, effective communication and information technology is required. Various communication standards to facilitate standard-based communication in distribution network have been proposed in literature. This chapter presents various communication standards and technologies that can be employed in ADN. Among various communication standards, IEC 61850 standard has emerged as the de facto standard for power utility automation. IEC 61850-based information modeling for ADN entities has also been presented in this chapter. To evaluate the performance of ADN communication architecture, performance metrics and performance evaluation tools have also been presented in this chapter

    Autonomous soft open point control for active distribution network voltage level management

    Get PDF
    With rapid development towards sustainable smart grids, the future electricity distribution networks should be able to host more and more distributed generation (DG) and enable also higher demand peaks e.g., due to charging of electric vehicles (EVs). Soft Open Point (SOP) is one potential enabling solution, which could provide multiple functionalities for future active network management (ANM) and improve resiliency and flexibility of future electricity distribution networks. The focus in this paper is to design a new control method for SOP inverters in back-to-back (B2B) configuration. This paper proposes an outer autonomous reactive power controller for active voltage level management in an example medium-voltage (MV) distribution network. The developed new SOP control methods are validated with Matlab based simulation results. Results show that developed autonomous SOP control is an effective option for active voltage management in future MV networks.fi=vertaisarvioitu|en=peerReviewed
    corecore