212,986 research outputs found

    H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks

    Full text link
    In this paper, we propose a hybrid medium access control protocol (H-MAC) for wireless sensor networks. It is based on the IEEE 802.11's power saving mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to improve performance. Existing MAC protocols for sensor networks reduce energy consumptions by introducing variation in an active/sleep mechanism. But they may not provide energy efficiency in varying traffic conditions as well as they did not address Quality of Service (QoS) issues. H-MAC, the propose MAC protocol maintains energy efficiency as well as QoS issues like latency, throughput, and channel utilization. Our numerical results show that H-MAC has significant improvements in QoS parameters than the existing MAC protocols for sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201

    Performance Characterization of Random Proximity Sensor Networks

    Get PDF
    In this paper, we characterize the localization performance and connectivity of sensors networks consisting of binary proximity sensors using a random sensor management strategy. The sensors are deployed uniformly at random over an area, and to limit the energy dissipation, each sensor node switches between an active and idle state according to random mechanisms regulated by a birth-and-death stochastic process. We first develop an upper bound for the minimum transmitting range which guarantees connectivity of the active nodes in the network with a desired probability. Then, we derive an analytical formula for predicting the mean-squared localization error of the active nodes when assuming a centroid localization scheme. Simulations are used to verify the theoretical claims for various localization schemes that operate only over connected active nodes

    Channel and active component abstractions for WSN programming - a language model with operating system support

    Get PDF
    To support the programming of Wireless Sensor Networks, a number of unconventional programming models have evolved, in particular the event-based model. These models are non-intuitive to programmers due to the introduction of unnecessary, non-intrinsic complexity. Component-based languages like Insense can eliminate much of this unnecessary complexity via the use of active components and synchronous channels. However, simply layering an Insense implementation over an existing event-based system, like TinyOS, while proving efficacy, is insufficiently space and time efficient for production use. The design and implementation of a new language-specific OS, InceOS, enables both space and time efficient programming of sensor networks using component-based languages like Insense

    Simulation of Energy Consumption in Multi Cluster Wireless Sensor Networks

    Full text link
    Energy conserving protocols in wireless sensor networks (WSNs), such as S-MAC, introduce multi-cluster network. The border nodes in multi cluster WSNs have more active time than the other nodes in the network; hence have more energy depletion rate. Since battery replacement in most networks is considered difficult, one or more nodes running out of energy prematurely will affect the network connectivity and decrease the overall network performance severely. This paper aims to (1) analyze the energy consumption in a multi-cluster sensor network and compare it to the single cluster scenario (2) investigate the merging time in a single cluster network. The result shows that, in average the energy needed to deliver a packet in the multi cluster networks is about 150% more than the energy needed in the single cluster networks. Moreover, the merging time in the single cluster network using schedule offset as the merging criteria in average is slightly smaller than one in the network using schedule ID as the merging criteria

    The Beauty of the Commons: Optimal Load Sharing by Base Station Hopping in Wireless Sensor Networks

    Get PDF
    In wireless sensor networks (WSNs), the base station (BS) is a critical sensor node whose failure causes severe data losses. Deploying multiple fixed BSs improves the robustness, yet requires all BSs to be installed with large batteries and large energy-harvesting devices due to the high energy consumption of BSs. In this paper, we propose a scheme to coordinate the multiple deployed BSs such that the energy supplies required by individual BSs can be substantially reduced. In this scheme, only one BS is selected to be active at a time and the other BSs act as regular sensor nodes. We first present the basic architecture of our system, including how we keep the network running with only one active BS and how we manage the handover of the role of the active BS. Then, we propose an algorithm for adaptively selecting the active BS under the spatial and temporal variations of energy resources. This algorithm is simple to implement but is also asymptotically optimal under mild conditions. Finally, by running simulations and real experiments on an outdoor testbed, we verify that the proposed scheme is energy-efficient, has low communication overhead and reacts rapidly to network changes

    Consistent Sensor, Relay, and Link Selection in Wireless Sensor Networks

    Full text link
    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need to communicate their measurements to one or multiple access points. Information messages are routed stochastically in order to capture the inherent reliability of the broadcast links via multiple hops, where the nodes may be acting as sensors or as relays. We aim at finding optimal sparse solutions where both, the consistency between the selected subset of sensors, relays and links, and the graph connectivity in the selected subnetwork are guaranteed. Furthermore, active nodes should ensure a network performance in a parameter estimation scenario. Two problems are studied: sensor and link selection; and sensor, relay and link selection. To solve such problems, we present tractable optimization formulations and propose two algorithms that satisfy the previous network requirements. We also explore an extension scenario: only link selection. Simulation results show the performance of the algorithms and illustrate how they provide a sparse solution, which not only saves energy but also guarantees the network requirements.Comment: 27 pages, 17 figure
    corecore