18,585 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS

    SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction

    Full text link
    Facial beauty prediction (FBP) is a significant visual recognition problem to make assessment of facial attractiveness that is consistent to human perception. To tackle this problem, various data-driven models, especially state-of-the-art deep learning techniques, were introduced, and benchmark dataset become one of the essential elements to achieve FBP. Previous works have formulated the recognition of facial beauty as a specific supervised learning problem of classification, regression or ranking, which indicates that FBP is intrinsically a computation problem with multiple paradigms. However, most of FBP benchmark datasets were built under specific computation constrains, which limits the performance and flexibility of the computational model trained on the dataset. In this paper, we argue that FBP is a multi-paradigm computation problem, and propose a new diverse benchmark dataset, called SCUT-FBP5500, to achieve multi-paradigm facial beauty prediction. The SCUT-FBP5500 dataset has totally 5500 frontal faces with diverse properties (male/female, Asian/Caucasian, ages) and diverse labels (face landmarks, beauty scores within [1,~5], beauty score distribution), which allows different computational models with different FBP paradigms, such as appearance-based/shape-based facial beauty classification/regression model for male/female of Asian/Caucasian. We evaluated the SCUT-FBP5500 dataset for FBP using different combinations of feature and predictor, and various deep learning methods. The results indicates the improvement of FBP and the potential applications based on the SCUT-FBP5500.Comment: 6 pages, 14 figures, conference pape

    A dynamic texture based approach to recognition of facial actions and their temporal models

    Get PDF
    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set
    • …
    corecore