4,725 research outputs found

    Reactive Rules for Emergency Management

    Get PDF
    The goal of the following survey on Event-Condition-Action (ECA) Rules is to come to a common understanding and intuition on this topic within EMILI. Thus it does not give an academic overview on Event-Condition-Action Rules which would be valuable for computer scientists only. Instead the survey tries to introduce Event-Condition-Action Rules and their use for emergency management based on real-life examples from the use-cases identified in Deliverable 3.1. In this way we hope to address both, computer scientists and security experts, by showing how the Event-Condition-Action Rule technology can help to solve security issues in emergency management. The survey incorporates information from other work packages, particularly from Deliverable D3.1 and its Annexes, D4.1, D2.1 and D6.2 wherever possible

    Transaction Logic with (Complex) Events

    Get PDF
    Sem PDF.This work deals with the problem of combining reactive features, such as the ability to respond to events and define complex events, with the execution of ACID transactions over general Knowledge Bases (KBs). With this as goal, we build on Transaction Logic (T R), a logic precisely designed to model and execute (ACID) transactions in KBs defined by arbitrary logic theories. In it, transactions are written in a logic- programming style, by combining primitive update operations over a general KB, with the usual logic programming connectives and some additional connectives e.g. to express sequence of actions. While T R is a natural choice to deal with transactions, it remains the question whether T R can be used to express complex events, but also to deal simultaneously with the detection of complex events and the execution of transactions. In this paper we show that the former is possible while the latter is not. For that, we start by illustrating how T R can express complex events, and in particular, how SNOOP event expressions can be translated in the logic. Afterwards, we show why T R fails to deal with the two issues together, and propose Transaction Logic with Events to solve the intended problem. The achieved solution is a non-monotonic conservative extension of T R, which guarantees that every complex event detected in a transaction is necessarily responded. Along with its syntax, model theory and executional semantics, we prove some properties, including that it is indeed a conservative extension, and that it enjoys from important properties of non-monotonic logics, like support.publishe

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor
    corecore