5,291 research outputs found

    SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces

    Full text link
    Batch Bayesian optimisation and Bayesian quadrature have been shown to be sample-efficient methods of performing optimisation and quadrature where expensive-to-evaluate objective functions can be queried in parallel. However, current methods do not scale to large batch sizes -- a frequent desideratum in practice (e.g. drug discovery or simulation-based inference). We present a novel algorithm, SOBER, which permits scalable and diversified batch global optimisation and quadrature with arbitrary acquisition functions and kernels over discrete and mixed spaces. The key to our approach is to reformulate batch selection for global optimisation as a quadrature problem, which relaxes acquisition function maximisation (non-convex) to kernel recombination (convex). Bridging global optimisation and quadrature can efficiently solve both tasks by balancing the merits of exploitative Bayesian optimisation and explorative Bayesian quadrature. We show that SOBER outperforms 11 competitive baselines on 12 synthetic and diverse real-world tasks.Comment: 34 pages, 12 figure

    An Entropy Search Portfolio for Bayesian Optimization

    Full text link
    Bayesian optimization is a sample-efficient method for black-box global optimization. How- ever, the performance of a Bayesian optimization method very much depends on its exploration strategy, i.e. the choice of acquisition function, and it is not clear a priori which choice will result in superior performance. While portfolio methods provide an effective, principled way of combining a collection of acquisition functions, they are often based on measures of past performance which can be misleading. To address this issue, we introduce the Entropy Search Portfolio (ESP): a novel approach to portfolio construction which is motivated by information theoretic considerations. We show that ESP outperforms existing portfolio methods on several real and synthetic problems, including geostatistical datasets and simulated control tasks. We not only show that ESP is able to offer performance as good as the best, but unknown, acquisition function, but surprisingly it often gives better performance. Finally, over a wide range of conditions we find that ESP is robust to the inclusion of poor acquisition functions.Comment: 10 pages, 5 figure

    Domain-Agnostic Batch Bayesian Optimization with Diverse Constraints via Bayesian Quadrature

    Full text link
    Real-world optimisation problems often feature complex combinations of (1) diverse constraints, (2) discrete and mixed spaces, and are (3) highly parallelisable. (4) There are also cases where the objective function cannot be queried if unknown constraints are not satisfied, e.g. in drug discovery, safety on animal experiments (unknown constraints) must be established before human clinical trials (querying objective function) may proceed. However, most existing works target each of the above three problems in isolation and do not consider (4) unknown constraints with query rejection. For problems with diverse constraints and/or unconventional input spaces, it is difficult to apply these techniques as they are often mutually incompatible. We propose cSOBER, a domain-agnostic prudent parallel active sampler for Bayesian optimisation, based on SOBER of Adachi et al. (2023). We consider infeasibility under unknown constraints as a type of integration error that we can estimate. We propose a theoretically-driven approach that propagates such error as a tolerance in the quadrature precision that automatically balances exploitation and exploration with the expected rejection rate. Moreover, our method flexibly accommodates diverse constraints and/or discrete and mixed spaces via adaptive tolerance, including conventional zero-risk cases. We show that cSOBER outperforms competitive baselines on diverse real-world blackbox-constrained problems, including safety-constrained drug discovery, and human-relationship-aware team optimisation over graph-structured space.Comment: 24 pages, 5 figure
    corecore