102,679 research outputs found

    ODN: Opening the Deep Network for Open-set Action Recognition

    Full text link
    In recent years, the performance of action recognition has been significantly improved with the help of deep neural networks. Most of the existing action recognition works hold the \textit{closed-set} assumption that all action categories are known beforehand while deep networks can be well trained for these categories. However, action recognition in the real world is essentially an \textit{open-set} problem, namely, it is impossible to know all action categories beforehand and consequently infeasible to prepare sufficient training samples for those emerging categories. In this case, applying closed-set recognition methods will definitely lead to unseen-category errors. To address this challenge, we propose the Open Deep Network (ODN) for the open-set action recognition task. Technologically, ODN detects new categories by applying a multi-class triplet thresholding method, and then dynamically reconstructs the classification layer and "opens" the deep network by adding predictors for new categories continually. In order to transfer the learned knowledge to the new category, two novel methods, Emphasis Initialization and Allometry Training, are adopted to initialize and incrementally train the new predictor so that only few samples are needed to fine-tune the model. Extensive experiments show that ODN can effectively detect and recognize new categories with little human intervention, thus applicable to the open-set action recognition tasks in the real world. Moreover, ODN can even achieve comparable performance to some closed-set methods.Comment: 6 pages, 3 figures, ICME 201

    Co-occurrence Feature Learning for Skeleton based Action Recognition using Regularized Deep LSTM Networks

    Full text link
    Skeleton based action recognition distinguishes human actions using the trajectories of skeleton joints, which provide a very good representation for describing actions. Considering that recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM) can learn feature representations and model long-term temporal dependencies automatically, we propose an end-to-end fully connected deep LSTM network for skeleton based action recognition. Inspired by the observation that the co-occurrences of the joints intrinsically characterize human actions, we take the skeleton as the input at each time slot and introduce a novel regularization scheme to learn the co-occurrence features of skeleton joints. To train the deep LSTM network effectively, we propose a new dropout algorithm which simultaneously operates on the gates, cells, and output responses of the LSTM neurons. Experimental results on three human action recognition datasets consistently demonstrate the effectiveness of the proposed model.Comment: AAAI 2016 conferenc

    Interpretable 3D Human Action Analysis with Temporal Convolutional Networks

    Full text link
    The discriminative power of modern deep learning models for 3D human action recognition is growing ever so potent. In conjunction with the recent resurgence of 3D human action representation with 3D skeletons, the quality and the pace of recent progress have been significant. However, the inner workings of state-of-the-art learning based methods in 3D human action recognition still remain mostly black-box. In this work, we propose to use a new class of models known as Temporal Convolutional Neural Networks (TCN) for 3D human action recognition. Compared to popular LSTM-based Recurrent Neural Network models, given interpretable input such as 3D skeletons, TCN provides us a way to explicitly learn readily interpretable spatio-temporal representations for 3D human action recognition. We provide our strategy in re-designing the TCN with interpretability in mind and how such characteristics of the model is leveraged to construct a powerful 3D activity recognition method. Through this work, we wish to take a step towards a spatio-temporal model that is easier to understand, explain and interpret. The resulting model, Res-TCN, achieves state-of-the-art results on the largest 3D human action recognition dataset, NTU-RGBD.Comment: 8 pages, 5 figures, BNMW CVPR 2017 Submissio

    Deep Learning For Smile Recognition

    Get PDF
    Inspired by recent successes of deep learning in computer vision, we propose a novel application of deep convolutional neural networks to facial expression recognition, in particular smile recognition. A smile recognition test accuracy of 99.45% is achieved for the Denver Intensity of Spontaneous Facial Action (DISFA) database, significantly outperforming existing approaches based on hand-crafted features with accuracies ranging from 65.55% to 79.67%. The novelty of this approach includes a comprehensive model selection of the architecture parameters, allowing to find an appropriate architecture for each expression such as smile. This is feasible because all experiments were run on a Tesla K40c GPU, allowing a speedup of factor 10 over traditional computations on a CPU.Comment: Proceedings of the 12th Conference on Uncertainty Modelling in Knowledge Engineering and Decision Making (FLINS 2016

    DIY Human Action Data Set Generation

    Full text link
    The recent successes in applying deep learning techniques to solve standard computer vision problems has aspired researchers to propose new computer vision problems in different domains. As previously established in the field, training data itself plays a significant role in the machine learning process, especially deep learning approaches which are data hungry. In order to solve each new problem and get a decent performance, a large amount of data needs to be captured which may in many cases pose logistical difficulties. Therefore, the ability to generate de novo data or expand an existing data set, however small, in order to satisfy data requirement of current networks may be invaluable. Herein, we introduce a novel way to partition an action video clip into action, subject and context. Each part is manipulated separately and reassembled with our proposed video generation technique. Furthermore, our novel human skeleton trajectory generation along with our proposed video generation technique, enables us to generate unlimited action recognition training data. These techniques enables us to generate video action clips from an small set without costly and time-consuming data acquisition. Lastly, we prove through extensive set of experiments on two small human action recognition data sets, that this new data generation technique can improve the performance of current action recognition neural nets
    • …
    corecore