29,047 research outputs found

    Action Prediction in Humans and Robots

    Full text link
    Efficient action prediction is of central importance for the fluent workflow between humans and equally so for human-robot interaction. To achieve prediction, actions can be encoded by a series of events, where every event corresponds to a change in a (static or dynamic) relation between some of the objects in a scene. Manipulation actions and others can be uniquely encoded this way and only, on average, less than 60% of the time series has to pass until an action can be predicted. Using a virtual reality setup and testing ten different manipulation actions, here we show that in most cases humans predict actions at the same event as the algorithm. In addition, we perform an in-depth analysis about the temporal gain resulting from such predictions when chaining actions and show in some robotic experiments that the percentage gain for humans and robots is approximately equal. Thus, if robots use this algorithm then their prediction-moments will be compatible to those of their human interaction partners, which should much benefit natural human-robot collaboration

    Explainable and Interpretable Decision-Making for Robotic Tasks

    Get PDF
    Future generations of robots, such as service robots that support humans with household tasks, will be a pervasive part of our daily lives. The human\u27s ability to understand the decision-making process of robots is thereby considered to be crucial for establishing trust-based and efficient interactions between humans and robots. In this thesis, we present several interpretable and explainable decision-making methods that aim to improve the human\u27s understanding of a robot\u27s actions, with a particular focus on the explanation of why robot failures were committed.In this thesis, we consider different types of failures, such as task recognition errors and task execution failures. Our first goal is an interpretable approach to learning from human demonstrations (LfD), which is essential for robots to learn new tasks without the time-consuming trial-and-error learning process. Our proposed method deals with the challenge of transferring human demonstrations to robots by an automated generation of symbolic planning operators based on interpretable decision trees. Our second goal is the prediction, explanation, and prevention of robot task execution failures based on causal models of the environment. Our contribution towards the second goal is a causal-based method that finds contrastive explanations for robot execution failures, which enables robots to predict, explain and prevent even timely shifted action failures (e.g., the current action was successful but will negatively affect the success of future actions). Since learning causal models is data-intensive, our final goal is to improve the data efficiency by utilizing prior experience. This investigation aims to help robots learn causal models faster, enabling them to provide failure explanations at the cost of fewer action execution experiments.In the future, we will work on scaling up the presented methods to generalize to more complex, human-centered applications

    Action-conditioned Deep Visual Prediction with RoAM, a new Indoor Human Motion Dataset for Autonomous Robots

    Full text link
    With the increasing adoption of robots across industries, it is crucial to focus on developing advanced algorithms that enable robots to anticipate, comprehend, and plan their actions effectively in collaboration with humans. We introduce the Robot Autonomous Motion (RoAM) video dataset, which is collected with a custom-made turtlebot3 Burger robot in a variety of indoor environments recording various human motions from the robot's ego-vision. The dataset also includes synchronized records of the LiDAR scan and all control actions taken by the robot as it navigates around static and moving human agents. The unique dataset provides an opportunity to develop and benchmark new visual prediction frameworks that can predict future image frames based on the action taken by the recording agent in partially observable scenarios or cases where the imaging sensor is mounted on a moving platform. We have benchmarked the dataset on our novel deep visual prediction framework called ACPNet where the approximated future image frames are also conditioned on action taken by the robot and demonstrated its potential for incorporating robot dynamics into the video prediction paradigm for mobile robotics and autonomous navigation research
    • …
    corecore