31,036 research outputs found

    GPU acceleration of time-domain fluorescence lifetime imaging

    Get PDF
    Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chemistry, and medical research. We propose a Graphic Processing Units (GPUs) based FLIM analysis tool suitable for high-speed and flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can significantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores) based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and non-iterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and experimental FLIM data. The results show that at the same precision the GPU analysis can be up to 24-fold faster than its CPU-OpenMP counterpart. This means that even for high precision but time-consuming iterative FLIM algorithms, GPUs enable fast or even real-time analysis

    Time-resolved magnetic sensing with electronic spins in diamond

    Get PDF
    Quantum probes can measure time-varying fields with high sensitivity and spatial resolution, enabling the study of biological, material, and physical phenomena at the nanometer scale. In particular, nitrogen-vacancy centers in diamond have recently emerged as promising sensors of magnetic and electric fields. Although coherent control techniques have measured the amplitude of constant or oscillating fields, these techniques are not suitable for measuring time-varying fields with unknown dynamics. Here we introduce a coherent acquisition method to accurately reconstruct the temporal profile of time-varying fields using Walsh sequences. These decoupling sequences act as digital filters that efficiently extract spectral coefficients while suppressing decoherence, thus providing improved sensitivity over existing strategies. We experimentally reconstruct the magnetic field radiated by a physical model of a neuron using a single electronic spin in diamond and discuss practical applications. These results will be useful to implement time-resolved magnetic sensing with quantum probes at the nanometer scale.Comment: 8+12 page

    Whole-brain vasculature reconstruction at the single capillary level

    Get PDF
    The distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network

    Phase-Retrieved Tomography enables imaging of a Tumor Spheroid in Mesoscopy Regime

    Get PDF
    Optical tomographic imaging of biological specimen bases its reliability on the combination of both accurate experimental measures and advanced computational techniques. In general, due to high scattering and absorption in most of the tissues, multi view geometries are required to reduce diffuse halo and blurring in the reconstructions. Scanning processes are used to acquire the data but they inevitably introduces perturbation, negating the assumption of aligned measures. Here we propose an innovative, registration free, imaging protocol implemented to image a human tumor spheroid at mesoscopic regime. The technique relies on the calculation of autocorrelation sinogram and object autocorrelation, finalizing the tomographic reconstruction via a three dimensional Gerchberg Saxton algorithm that retrieves the missing phase information. Our method is conceptually simple and focuses on single image acquisition, regardless of the specimen position in the camera plane. We demonstrate increased deep resolution abilities, not achievable with the current approaches, rendering the data alignment process obsolete.Comment: 21 pages, 5 figure
    • …
    corecore