3,607 research outputs found

    Integrated speech and morphological processing in a connectionist continuous speech understanding for Korean

    Full text link
    A new tightly coupled speech and natural language integration model is presented for a TDNN-based continuous possibly large vocabulary speech recognition system for Korean. Unlike popular n-best techniques developed for integrating mainly HMM-based speech recognition and natural language processing in a {\em word level}, which is obviously inadequate for morphologically complex agglutinative languages, our model constructs a spoken language system based on a {\em morpheme-level} speech and language integration. With this integration scheme, the spoken Korean processing engine (SKOPE) is designed and implemented using a TDNN-based diphone recognition module integrated with a Viterbi-based lexical decoding and symbolic phonological/morphological co-analysis. Our experiment results show that the speaker-dependent continuous {\em eojeol} (Korean word) recognition and integrated morphological analysis can be achieved with over 80.6% success rate directly from speech inputs for the middle-level vocabularies.Comment: latex source with a4 style, 15 pages, to be published in computer processing of oriental language journa

    Investigation of Frame Alignments for GMM-based Digit-prompted Speaker Verification

    Full text link
    Frame alignments can be computed by different methods in GMM-based speaker verification. By incorporating a phonetic Gaussian mixture model (PGMM), we are able to compare the performance using alignments extracted from the deep neural networks (DNN) and the conventional hidden Markov model (HMM) in digit-prompted speaker verification. Based on the different characteristics of these two alignments, we present a novel content verification method to improve the system security without much computational overhead. Our experiments on the RSR2015 Part-3 digit-prompted task show that, the DNN based alignment performs on par with the HMM alignment. The results also demonstrate the effectiveness of the proposed Kullback-Leibler (KL) divergence based scoring to reject speech with incorrect pass-phrases.Comment: accepted by APSIPA ASC 201

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination

    Language Modeling for Multi-Domain Speech-Driven Text Retrieval

    Full text link
    We report experimental results associated with speech-driven text retrieval, which facilitates retrieving information in multiple domains with spoken queries. Since users speak contents related to a target collection, we produce language models used for speech recognition based on the target collection, so as to improve both the recognition and retrieval accuracy. Experiments using existing test collections combined with dictated queries showed the effectiveness of our method

    Speech recognition experiments with audiobooks

    Get PDF
    Under real-life conditions several factors may be present that make the automatic recognition of speech difficult. The most obvious examples are background noise, peculiarities of the speaker's voice, sloppy articulation and strong emotional load. These all pose difficult problems for robust speech recognition, but it is not exactly clear how much each contributes to the difficulty of the task. In this paper we examine the abilities of our best recognition technologies under near-ideal conditions. The optimal conditions will be simulated by working with the sound material of an audiobook, in which most of the disturbing factors mentioned above are absent. Firstly pure phone recognition experiments will be performed, where neural net-based technologies will also be tried as well as the conventional Hidden Markov Models. Then we move on to large vocabulary recognition, where morphbased language models are applied to improve the performance of the standard word-based technology. The tests clearly justify our assertion that audiobooks pose a much easier recognition task than real-life databases. In both types of tasks we report the lowest error rates we have achieved so far in Hungarian continuous speech recognition
    corecore