6 research outputs found

    Acoustic Modelling for Under-Resourced Languages

    Get PDF
    Automatic speech recognition systems have so far been developed only for very few languages out of the 4,000-7,000 existing ones. In this thesis we examine methods to rapidly create acoustic models in new, possibly under-resourced languages, in a time and cost effective manner. For this we examine the use of multilingual models, the application of articulatory features across languages, and the automatic discovery of word-like units in unwritten languages

    Multilingual Adaptation of RNN Based ASR Systems

    Full text link
    In this work, we focus on multilingual systems based on recurrent neural networks (RNNs), trained using the Connectionist Temporal Classification (CTC) loss function. Using a multilingual set of acoustic units poses difficulties. To address this issue, we proposed Language Feature Vectors (LFVs) to train language adaptive multilingual systems. Language adaptation, in contrast to speaker adaptation, needs to be applied not only on the feature level, but also to deeper layers of the network. In this work, we therefore extended our previous approach by introducing a novel technique which we call "modulation". Based on this method, we modulated the hidden layers of RNNs using LFVs. We evaluated this approach in both full and low resource conditions, as well as for grapheme and phone based systems. Lower error rates throughout the different conditions could be achieved by the use of the modulation.Comment: 5 pages, 1 figure, to appear in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Veröffentlichungen und Vorträge 2009 der Mitglieder der Fakultät für Informatik

    Get PDF

    Jahresbericht 2009 der Fakultät für Informatik

    Get PDF

    Speech recognition for under-resourced languages: Data sharing in hidden Markov model systems

    No full text
    For purposes of automated speech recognition in under-resourced environments, techniques used to share acoustic data between closely related or similar languages become important. Donor languages with abundant resources can potentially be used to increase the recognition accuracy of speech systems developed in the resource poor target language. The assumption is that adding more data will increase the robustness of the statistical estimations captured by the acoustic models. In this study we investigated data sharing between Afrikaans and Flemish – an under-resourced and well-resourced language, respectively. Our approach was focused on the exploration of model adaptation and refinement techniques associated with hidden Markov model based speech recognition systems to improve the benefit of sharing data. Specifically, we focused on the use of currently available techniques, some possible combinations and the exact utilisation of the techniques during the acoustic model development process. Our findings show that simply using normal approaches to adaptation and refinement does not result in any benefits when adding Flemish data to the Afrikaans training pool. The only observed improvement was achieved when developing acoustic models on all available data but estimating model refinements and adaptations on the target data only. Significance:  Acoustic modelling for under-resourced languages Automatic speech recognition for Afrikaans Data sharing between Flemish and Afrikaans to improve acoustic modelling for Afrikaan
    corecore