209,074 research outputs found
Introduction to acoustic emission
Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed
Adaptive DCTNet for Audio Signal Classification
In this paper, we investigate DCTNet for audio signal classification. Its
output feature is related to Cohen's class of time-frequency distributions. We
introduce the use of adaptive DCTNet (A-DCTNet) for audio signals feature
extraction. The A-DCTNet applies the idea of constant-Q transform, with its
center frequencies of filterbanks geometrically spaced. The A-DCTNet is
adaptive to different acoustic scales, and it can better capture low frequency
acoustic information that is sensitive to human audio perception than features
such as Mel-frequency spectral coefficients (MFSC). We use features extracted
by the A-DCTNet as input for classifiers. Experimental results show that the
A-DCTNet and Recurrent Neural Networks (RNN) achieve state-of-the-art
performance in bird song classification rate, and improve artist identification
accuracy in music data. They demonstrate A-DCTNet's applicability to signal
processing problems.Comment: International Conference of Acoustic and Speech Signal Processing
(ICASSP). New Orleans, United States, March, 201
A broadband RF continuously variable time delay device
A method for implementation of continuously variable time delay of broadband RF signals is described. The method uses Bragg Cell and optical heterodyne technology. The signal to be delayed is applied to the Bragg Cell acoustic transducer, and the delay time is the acoustic transit time from this transducer to the incident light beam. By translating the light beam, the delay is varied. Expressions describing the Bragg Cell diffraction, lens Fourier transformation, and the optical heterodyne processes are developed. Specifications for the variable delay including bandwidth, range of delay, and insertion loss are provided. Applications include radar signal processing, spread spectrum intercept, radar ECM, and adaptive array antenna processing
Joint model-based recognition and localization of overlapped acoustic events using a set of distributed small microphone arrays
In the analysis of acoustic scenes, often the occurring sounds have to be
detected in time, recognized, and localized in space. Usually, each of these
tasks is done separately. In this paper, a model-based approach to jointly
carry them out for the case of multiple simultaneous sources is presented and
tested. The recognized event classes and their respective room positions are
obtained with a single system that maximizes the combination of a large set of
scores, each one resulting from a different acoustic event model and a
different beamformer output signal, which comes from one of several
arbitrarily-located small microphone arrays. By using a two-step method, the
experimental work for a specific scenario consisting of meeting-room acoustic
events, either isolated or overlapped with speech, is reported. Tests carried
out with two datasets show the advantage of the proposed approach with respect
to some usual techniques, and that the inclusion of estimated priors brings a
further performance improvement.Comment: Computational acoustic scene analysis, microphone array signal
processing, acoustic event detectio
Analysis of vibration and acoustic signals for noncontact measurement of engine rotation speed
The non-contact measurement of engine speed can be realized by analyzing engine vibration frequency. However, the vibration signal is distorted by harmonics and noise in the measurement. This paper presents a novel method for the measurement of engine rotation speed by using the cross-correlation of vibration and acoustic signals. This method can enhance the same frequency components in engine vibration and acoustic signal. After cross-correlation processing, the energy centrobaric correction method is applied to estimate the accurate frequency of the engine's vibration. This method can be implemented with a low-cost embedded system estimating the cross-correlation. Test results showed that this method outperformed the traditional vibration-based measurement method.Web of Science203art. no. 68
Raking the Cocktail Party
We present the concept of an acoustic rake receiver---a microphone beamformer
that uses echoes to improve the noise and interference suppression. The rake
idea is well-known in wireless communications; it involves constructively
combining different multipath components that arrive at the receiver antennas.
Unlike spread-spectrum signals used in wireless communications, speech signals
are not orthogonal to their shifts. Therefore, we focus on the spatial
structure, rather than temporal. Instead of explicitly estimating the channel,
we create correspondences between early echoes in time and image sources in
space. These multiple sources of the desired and the interfering signal offer
additional spatial diversity that we can exploit in the beamformer design.
We present several "intuitive" and optimal formulations of acoustic rake
receivers, and show theoretically and numerically that the rake formulation of
the maximum signal-to-interference-and-noise beamformer offers significant
performance boosts in terms of noise and interference suppression. Beyond
signal-to-noise ratio, we observe gains in terms of the \emph{perceptual
evaluation of speech quality} (PESQ) metric for the speech quality. We
accompany the paper by the complete simulation and processing chain written in
Python. The code and the sound samples are available online at
\url{http://lcav.github.io/AcousticRakeReceiver/}.Comment: 12 pages, 11 figures, Accepted for publication in IEEE Journal on
Selected Topics in Signal Processing (Special Issue on Spatial Audio
Studies of acoustic emission from point and extended sources
The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen
- …
