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INTRODUCTION TO ACOUSTIC EMISSION

Fundamental Considerations

G. Possa

CISE, Segrate, Milan, Italy

In recent years in the most advanced industrial countries 	 */23
i

(and in minor degree in Italy), industrial applications of non-

destructive testing (NDT) based on acoustic emission (AE) have

received increasing consideration. We will present below the

fundamental characteristics of this new technical procedure.

WHAT IS AE?

We define as AE in a material the rapid and localized release

of small amounts of elastic energy which occurs after specific

microstructural processes have taken place.

Among the microstructural processes which can occur in mater-

ials, the following cause specific generation of AE:

• processes forming plastic deformation zones (dislocation movement);

• crystalline phase transformations;

• fractures from microinclusions;

• inteagranular and intergranular fractures (associated, for

example, with nucleation and with formation of microcracks);

• abrupt separation of microstructural components (mieroinclusions,

foliations, crystalline grains) of the surrounding matrix;

• microsliding (for example, between the sides of fatigue cracks).

The elastic energy released in a single AE event can be ex-

tremely different, according to the particular microstructural

process of origin. As an indication, variations may range from

nanoerg (10 -9 erg) to erg (1 erg corresponds to the kinetic energy

of a steel ball of 1 mm radius and progressing at a speed of 7.8
cm/sec).

Numbers in margin indicate pagination of foreign text.
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The material is tested by placing on the surface of the item

a suitable number of AE sensors. The locations where these sensors

are applied are usually selected without knowing where the possible

defects occur. The vibrational perturbation caused by the AE

event at the source point reaches the various sensors after going

through a complex propagation process, ^rhich usually causes a deep

modification of the vibrational perturbation itself. Most metallic

structural materials are good conductors for sound and ultrasound,

at least up to frequencies of the order of 1 MHz. This permits us to

achieve an effective reception of large volumes of material with

few sensors, and is one of the largest advantages of AE-based NDT

procedures, which do not require any local inspection techniques.

The latter are always tedious and subject to possible errors.

In general, source-sensor distances of a few meters on the

item to be tested are acceptable. For longer distances, there is

the risk that the fraction of vibrational energy released by the AE

event and effectively perceived by the sensor is too small and may

have lost during the long propagation process some of the character-

istics which are required for NDT utilization.

One cannot guarantee that all defects present in the material

with dimensions higher than a certain value will produce AE during

test stress. "Advance" microstructural processes of defects (and

therefore AE generation) are more strongly related, according to

fracture mechanics, to the actual conformation of the defect sur-

face and to factors which intensify stresses occurring; at their

"points", rather than to the dimensions of the defects. We have to

underline, however, that for test stresses of adequate intensity
	

/24

and suitable type, it is nearly certain that the most dangerous

defects, and especially planar defects (such as fatigue and stress

corrosion cracks) generate AE during the test, and are therefore

detectable. In this case as well, however, the characteristics of

AE phenomena do not provide information on the dimensions of the

defect which cause them.
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Figure 1. Typical AE pulse signal:
1) instant during which AE occurs; 2) propagation time of longi-
tudinal waves; 3) propagation time of Rayleigh waves;
4) longitudinal wave zone; 5) Rayleigh wave zone; 6) character-
istic	 period of oscillation of the sensor (for example 5 usec),

associated with microstructural processes which take place during

"advance" phenomena of defects possibly present. These techniques

therefore:

• make use of passive listening;

• detect phenomena occurring in the material at the moment in

which they take place.

These techniques, therefore, can only detect "dynamic" defects.

This is a limitation, but at the same time a great advantage,

because phenomena which "advance" are potentially the most danger-

ous.

Defects which may be present in the material can produce AE,
and therefore be detected. It is generally required that the material
undergo first an adequate stress, repesentative of working conditions.

This state of stress of the material can be induced in the

item to be tested in various ways: by application of special mech-

anical loads used for startup tests (pressure, force, etc.); using

actual working conditions; by applying transient thermal conditions,

etc.
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The material is tested by placing on the surface of the item

a suitable number of AE sensors.	 The locations where these sensors

are applied are usually selected without knowing where the possible

defects occur.	 The vibrational perturbation caused by the AE

event at the source point reaches the various sensors after going

through a complex propagation process, which usually causes a deep

modification of the vibrational perturbation itself. 	 Most metallic

structural materials are good conductors for sound and ultrasound,

at least up to frequencies of the order of 1 MHz. 	 This permits us to

achieve an effective reception of large volumes of material with

few sensors, and is one of the largest advantages of AE-based NDT

procedures, which do not require any local inspection techniques.

The latter are always tedious and subject to possible errors.

In general, source-sensor distances of a few meters on the

item to be tested are acceptable.	 For longer distances, there is

the risk that the fraction of vibrational energy released by the AE

event and effectively perceived by the sensor is too small and may

have lost during the long propagation process some of the character-

istics which are required for NDT utilization..'e

One cannot guarantee that all defects present in the material

with dimensions higher than a certain value will produce AE during

test stress.	 "Advance" microstructural processes of defects (and

therefore AE generation) are more strongly related, according to

fracture mechanics, to the actual conformation of the defect sur-

face and to factors which intensify stresses occurring; at their

"points", rather than to the dimensions of the defects. 	 We have to

underline, however, that for test stresses of adequate intensity	 /24

and suitable type, it is nearly certain that the most dangerous

defects, and especially planar defects (such as fatigue and stress

corrosion cracks) generate AE during the test, and are therefore

detectable.	 In this case as well, however, the characteristics of

AE phenomena do not provide information on the dimensions of the

defect which cause them.
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AE based NDT techniques are used essentially:

• to detect the presence of possible defects in the materials of

the items tested,]

• to determine the position of such defects.

This second objective is achieved by measuring the delay in

the time of arrival of single pulses to the various sensors. The

delay varies because the lengths of the acoustic source-sensor

paths vary. The accurate measurement of these time delays, to be

carried out with a. precision not lower than some microsecond, pro-

vides a location for the defects which generated AE.

THE TYPICAL AE SIGNAL

The shape of a typical pulse-AE signal is presented in Figure

1. The figure shows specifically the time at which the AE event

occars inside the material, the time when the wave front of long-

itudinal acoustic waves (the fastest in the propagation process

but with low energy content) reach the sensor, and finally the

time of arrival of the wave front of surface Rayleigh waves, which

carry most of the AE pulse energy. For small wall thicknesses
	

E ^^

(less than approximately 10 mm) Rayleigh waves are replaced by

surface Lamb waves, characteristic of a specific layer. Fcr these

waves, contrary to longitudinal, transverse and Rayleigh waves, the

velocity of propagation is not constant, but varies with the fre-

quency and the thickness of the layer.

The AE signal in Figure 1 shows a characteristic oscillating

behavior of average value equal to zero. This behavior is caused

by the sensor used to detect the AE pulse; this sensor is of

resonating type, to obtain maximum sensitivity. In the example

shown, the resonance frequency is of approximately 200 KHz, with

a corresponding oscillation period of approximately 5 usec.

An AE signal may last frequently for a total of a few hundred

microseconds. This length is explained with the presence of

5



acoustic source-sensor paths which are longer than direct paths

due to reflection; it is also explained by the low acoustic

abserption of the sensitive element of the sensor.

CHARACTERISTICS OF AN AE SENSOR

Modern AE detection systems permit obtaining from a typical AE

signal the following descriptive information:

o the time at which the signal reaches the sensor. This corres-

ponds to the time at which the most important wave front

(usually Rayleigh waves) crosses a suitable threshold.

o the peak amplitude of the signal or the signal energy (which is

proportional to.the square of the peak amplitude).

o the uphill velocity of the wave front at the time the threshold

is crossed. This parameter is of interest because the initial

part of the wave signal, the wave front, is most likely the least

"contaminated" during the propagation process and, therefore,

can provide information on the nature of the microstructural pro-

cess which produced the AE.	 -:

o the length of the signal.

A common previous characterization was the count of the number

of oscillations of the AE signal before going below threshold

("ring down counting"). This determination is an approximate

function of the energy of the signal, but is so dependent on the

dampening characteristics of the sensitive element, on the way the

sensor is applied to the surface and on the acoustic source-sensor

propagation process itself, that its meaning becomes ambiguous.

LOCALIZATION OF AE SOURCES
	

/25

The localization of AE sources is based on the precist measure-

anent of th ,? times at which the AE pulses reach the sensors. Time

delays are due only t^ the different paths between sources and

sensors. In particular, it is mandatory that the velocity of

6
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Figure 2. Localization of AE sources using the hyperbola
procedure:

1,2,3 are sensor positions; the AE source of the AE event character-
ized by ArmL and ",-(>-A	 is found at the intersection of the
two hyperbolas 'A and '* . For the case shown the possible
positions, S 1 and S 2 are found for the source.

propagation of AE pulse in the material tested be the same for all

directions and positions. To understand how the localization is

obtained, we can refer to the case of a flat surface on which we

locate three AE sensors (Figure 2). We consider at first sensors

1 and 2 where A r:: is the time delay measured for an AE pulse

originating from source S. Due to the fact that a hyperbola is the

locus of the points having a constant distance difference from two

fixed points called foc"., source S will be found on hyperbola Y12

having as foci the positions of the sensors 1 and 2 and defined by

a distance difference from sensors 1 and 2 equal to ••sfw , where

v is the velocity of propagation.

The same argument can be applied to sensors 1 and 3 for which

the delay O r:r was measured. Hyperbola Y 
1 

has as foci points 1

and 3 and as characteristic parameter v.AT„ . The source is found

at the intersection of hyperbolas Y 12 and Y13 . As shown in Figure

2, actual intersections can be more than one (up to a maximum of

four); the effective source position is identified using the sig-

nal of a fourth transducer and locating a third hyperbola. on which

the source is found.
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Calculations for the determination of hyperbolas and related

intersections, even if basically simple, are Somewhat laborious,

especially considering that the actual surfaces involved (''pressure

vessels, piping, valve bodies, etc.) are not planar but cylindri-

cal or more complex. The calculations have to be carried out "on-

line" for each of the thousands of AE events which can occur during

a test. For these reasons, the use of a computer is mandatory.

Instrumentation systems commercially available provide AE source

localization for linear (monodimensicnal) or surface (bidimensional)

syster.'s .

INSTRUMENTATION FOR AE MEASUREMENT AND CHARACTERIZATION

The sequence for AE measurements includes:

o an AE sensor.

An AE sensor can be equated to a very sensitive ear, applied

carefully to the surface of the item to be listened to. 1t3 typi-

cal dimensions are a cylinder with a radius of 2 cm and a height

of 4 cm. Piezoelectricity is the phenomenon utilized by the trans-

ducer converting AE into electricity.

o a preamplifier

This electronic device, to be located at a distance of a few

meters from the transducer, carries out the first amplification

of the extremely weak transducer signals, permitting their trans-

mission to longer distances (hundreds of meters).

o an amplifier

The total maximum gain of a typical amplification sequence

(preamplifier + amplifier) is (OS.

o a pulse counter

This device, whosl- output can be connected to a paper recorder,

counts AE pulses higher than a predetermined threshold value.

IL
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Figure 3. Single channel instrumentation sequence for
AE measurement:

S = AE sensor; PA = preamplifier; A = amplifier; C = threshold
(SO) counter; R = potentiometric paper recorder; N = number of
AE events.

Figure 4. Instrumentation used to localize AE sources
during hydrostatic tests of pressure vessels

E = AE sensor; PA = preamplifier; A = amplifier; D.S. = discrim-
inating device; 1--acoustic monitor; 2--OT measurement module;
3--teletype; 4--minicomputer; 5--display; 6--cassette recorder;
7--hard copy; 9--test pressure; 9--magnetic multi-track analog
recorder

The purpose of this instrumentation is to detect and count

above-threshold AE events, without performing any further analysis.

The localization on surfaces of AE sources requires a much more

complex instrumentation system, composed, as mentioned above, of at

least four reception lines and very often of some tens of lines,

with a device for AT measurement, a minicomputer with input and

output units for source location for data handling, storage and

analysis, and for presentation of the results (Figure 4).
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NDT APPLICATIONS

The most established NDT application is the testing, using

AE, of vessels, piping, valve bodies, etc., during pressure tests

(or equivalent mechanical tests), for certification or recertifi-

cation.	 Various groups are preparing at present operating stard-

ards for this test (an ASTM standard has already been formulated). j

There are many interesting AE applications to on-line surveillance
i

of important structures and components of industrial plants. 	 This

type of application makes maximum advantage of the pecular ATE char-

acteristic of being produced at the same time as the microstructural

phenomena of the materials which one wants to detect.	 Among

degradation processes of structural materials which are effectively

detected by AE, specific mention should be made of nucleation and +,

advancement and propagation of fatigue and stress corrosion cracks.

The following important applications have been carried out in this

field:

• major civil engineering structures (bridges, dams);

• offshore platforms;

• vital components of chemical, petrochemical and nuclear

plants (pressure vessels, piping segments, valves);

• components of electrical plants (transformers, insulators,

switches);

o aircraft structures.

An AE-based NDT test which is receiving widespread diffusion

is on-line testing of welding processes (tungsten inert gas, MIG,

electron beam, spot welding, etc.). Possible welding defects, such

as inclusions and cracks, generate during the cooling phase a

strong AE, and can therefore be readily detected and eliminated.

This test often requires a relatively simple instrumentation system

with two or three reception channels which can localize AE sources

on-line.

9
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AE procedures have been applied not only to the diagnostic NDT

of materials, but also to other processes, such as loss of pressure

fluids from small moving cracks, sliding of parts in relative

motion and metallic impacts. Consiaerable experience has now

been collected, and various instrumentation systems for the most

disparate applications, from fast detection of fluid leaks to the

monitoring of mine tunnels and incipient slides, are now commer-

cially available.
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