2,743 research outputs found

    Few-Shot Audio-Visual Learning of Environment Acoustics

    Full text link
    Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener, with implications for various applications in AR, VR, and robotics. Whereas traditional methods to estimate RIRs assume dense geometry and/or sound measurements throughout the environment, we explore how to infer RIRs based on a sparse set of images and echoes observed in the space. Towards that goal, we introduce a transformer-based method that uses self-attention to build a rich acoustic context, then predicts RIRs of arbitrary query source-receiver locations through cross-attention. Additionally, we design a novel training objective that improves the match in the acoustic signature between the RIR predictions and the targets. In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs, outperforming state-of-the-art methods and -- in a major departure from traditional methods -- generalizing to novel environments in a few-shot manner. Project: http://vision.cs.utexas.edu/projects/fs_rir.Comment: Accepted to NeurIPS 202

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    GWA: A Large High-Quality Acoustic Dataset for Audio Processing

    Full text link
    We present the Geometric-Wave Acoustic (GWA) dataset, a large-scale audio dataset of over 2 million synthetic room impulse responses (IRs) and their corresponding detailed geometric and simulation configurations. Our dataset samples acoustic environments from over 6.8K high-quality diverse and professionally designed houses represented as semantically labeled 3D meshes. We also present a novel real-world acoustic materials assignment scheme based on semantic matching that uses a sentence transformer model. We compute high-quality impulse responses corresponding to accurate low-frequency and high-frequency wave effects by automatically calibrating geometric acoustic ray-tracing with a finite-difference time-domain wave solver. We demonstrate the higher accuracy of our IRs by comparing with recorded IRs from complex real-world environments. The code and the full dataset will be released at the time of publication. Moreover, we highlight the benefits of GWA on audio deep learning tasks such as automated speech recognition, speech enhancement, and speech separation. We observe significant improvement over prior synthetic IR datasets in all tasks due to using our dataset.Comment: Project webpage https://gamma.umd.edu/pro/sound/gw

    Contrastive Representation Learning for Acoustic Parameter Estimation

    Full text link
    A study is presented in which a contrastive learning approach is used to extract low-dimensional representations of the acoustic environment from single-channel, reverberant speech signals. Convolution of room impulse responses (RIRs) with anechoic source signals is leveraged as a data augmentation technique that offers considerable flexibility in the design of the upstream task. We evaluate the embeddings across three different downstream tasks, which include the regression of acoustic parameters reverberation time RT60 and clarity index C50, and the classification into small and large rooms. We demonstrate that the learned representations generalize well to unseen data and perform similarly to a fully-supervised baseline.Comment: Accepted for ICASSP 2023, Camera-ready versio

    AdVerb: Visually Guided Audio Dereverberation

    Full text link
    We present AdVerb, a novel audio-visual dereverberation framework that uses visual cues in addition to the reverberant sound to estimate clean audio. Although audio-only dereverberation is a well-studied problem, our approach incorporates the complementary visual modality to perform audio dereverberation. Given an image of the environment where the reverberated sound signal has been recorded, AdVerb employs a novel geometry-aware cross-modal transformer architecture that captures scene geometry and audio-visual cross-modal relationship to generate a complex ideal ratio mask, which, when applied to the reverberant audio predicts the clean sound. The effectiveness of our method is demonstrated through extensive quantitative and qualitative evaluations. Our approach significantly outperforms traditional audio-only and audio-visual baselines on three downstream tasks: speech enhancement, speech recognition, and speaker verification, with relative improvements in the range of 18% - 82% on the LibriSpeech test-clean set. We also achieve highly satisfactory RT60 error scores on the AVSpeech dataset.Comment: Accepted at ICCV 2023. For project page, see https://gamma.umd.edu/researchdirections/speech/adver

    AV-NeRF: Learning Neural Fields for Real-World Audio-Visual Scene Synthesis

    Full text link
    Can machines recording an audio-visual scene produce realistic, matching audio-visual experiences at novel positions and novel view directions? We answer it by studying a new task -- real-world audio-visual scene synthesis -- and a first-of-its-kind NeRF-based approach for multimodal learning. Concretely, given a video recording of an audio-visual scene, the task is to synthesize new videos with spatial audios along arbitrary novel camera trajectories in that scene. We propose an acoustic-aware audio generation module that integrates prior knowledge of audio propagation into NeRF, in which we implicitly associate audio generation with the 3D geometry and material properties of a visual environment. Furthermore, we present a coordinate transformation module that expresses a view direction relative to the sound source, enabling the model to learn sound source-centric acoustic fields. To facilitate the study of this new task, we collect a high-quality Real-World Audio-Visual Scene (RWAVS) dataset. We demonstrate the advantages of our method on this real-world dataset and the simulation-based SoundSpaces dataset.Comment: NeurIPS 202

    iPhonMatchNet: Zero-Shot User-Defined Keyword Spotting Using Implicit Acoustic Echo Cancellation

    Full text link
    In response to the increasing interest in human--machine communication across various domains, this paper introduces a novel approach called iPhonMatchNet, which addresses the challenge of barge-in scenarios, wherein user speech overlaps with device playback audio, thereby creating a self-referencing problem. The proposed model leverages implicit acoustic echo cancellation (iAEC) techniques to increase the efficiency of user-defined keyword spotting models, achieving a remarkable 95% reduction in mean absolute error with a minimal increase in model size (0.13%) compared to the baseline model, PhonMatchNet. We also present an efficient model structure and demonstrate its capability to learn iAEC functionality without requiring a clean signal. The findings of our study indicate that the proposed model achieves competitive performance in real-world deployment conditions of smart devices.Comment: Submitted to ICASSP 202

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Deep Learning for Distant Speech Recognition

    Full text link
    Deep learning is an emerging technology that is considered one of the most promising directions for reaching higher levels of artificial intelligence. Among the other achievements, building computers that understand speech represents a crucial leap towards intelligent machines. Despite the great efforts of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially when users interact with a distant microphone in noisy and reverberant environments. The latter disturbances severely hamper the intelligibility of a speech signal, making Distant Speech Recognition (DSR) one of the major open challenges in the field. This thesis addresses the latter scenario and proposes some novel techniques, architectures, and algorithms to improve the robustness of distant-talking acoustic models. We first elaborate on methodologies for realistic data contamination, with a particular emphasis on DNN training with simulated data. We then investigate on approaches for better exploiting speech contexts, proposing some original methodologies for both feed-forward and recurrent neural networks. Lastly, inspired by the idea that cooperation across different DNNs could be the key for counteracting the harmful effects of noise and reverberation, we propose a novel deep learning paradigm called network of deep neural networks. The analysis of the original concepts were based on extensive experimental validations conducted on both real and simulated data, considering different corpora, microphone configurations, environments, noisy conditions, and ASR tasks.Comment: PhD Thesis Unitn, 201
    • …
    corecore