31,781 research outputs found

    Effect of front and back squat techniques on peak loads experienced by the Achilles tendon

    Get PDF
    Background A primary technique in the discipline of strength and conditioning the squat has two principal ‘back and front’ variants. Despite the physiological and strength benefits of the squat, the propensity for musculoskeletal injury is high. The current investigation examined the influence of the front and back squat variations on the load experienced by the Achilles tendon. Material/Methods Achilles tendon loads were obtained from eighteen experienced male participants as they completed both back and front squats. Differences between squat conditions were examined using Bonferroni adjusted (p = 0.0125) paired t-tests. Results The results showed that the peak Achilles tendon load was significantly greater in the back squat (2.67 ±0.74 B.W) condition compared to the front squat (2.37 ±0.69 B.W). Conclusions Given the proposed relationship between the magnitude of the load experienced by the Achilles tendon and tendon pathology, the back squat appears to place lifters at greater risk from Achilles tendon injury. Therefore, it may be prudent for lifters who are predisposed to Achilles tendon pathology to utilize the front squat in their training

    I.S.Mu.L.T. Achilles Tendon Ruptures Guidelines

    Get PDF
    This work provides easily accessible guidelines for the diagnosis, treatment and rehabilitation of Achilles tendon ruptures. These guidelines could be considered as recommendations for good clinical practice developed through a process of systematic review of the literature and expert opinion, to improve the quality of care for the individual patient and rationalize the use of resources. This work is divided into two sessions: 1) questions about hot topics; 2) answers to the questions following Evidence Based Medicine principles. Despite the frequency of the pathology andthe high level of satisfaction achieved in treatment of Achilles tendon ruptures, a global consensus is lacking. In fact, there is not a uniform treatment and rehabilitation protocol used for Achilles tendon ruptures

    Factors Related to Intra-Tendinous Morphology of Achilles Tendon in Runners

    Get PDF
    The purpose of this study was to determine and explore factors (age, sex, anthropometry, running and injury/pain history, tendon gross morphology, neovascularization, ankle range of motion, and ankle plantarflexor muscle endurance) related to intra-tendinous morphological alterations of the Achilles tendon in runners. An intra-tendinous morphological change was defined as collagen fiber disorganization detected by a low peak spatial frequency radius (PSFR) obtained from spatial frequency analysis (SFA) techniques in sonography. Ninety-one runners (53 males and 38 females; 37.9 ± 11.6 years) with 8.8 ± 7.3 years of running experience participated. Height, weight, and waist and hip circumferences were recorded. Participants completed a survey about running and injury/pain history and the Victorian Institute of Sport Assessment-Achilles (VISA-A) survey. Heel raise endurance and knee-to-wall composite dorsiflexion were assessed. Brightness-mode (B-mode) sonographic images were captured longitudinally and transversely on the Achilles tendon bilaterally. Sonographic images were analyzed for gross morphology (i.e., cross-sectional area [CSA]), neovascularization, and intra-tendinous morphology (i.e., PSFR) for each participant. The factors associated with altered intra-tendinous morphology of the Achilles tendon were analyzed using a generalized linear mixed model. Multivariate analyses revealed that male sex was significantly associated with a decreased PSFR. Additionally, male sex and the presence of current Achilles tendon pain were found to be significantly related to decreased PSFR using a univariate analysis. Our findings suggested that male sex and presence of current Achilles tendon pain were related to intra-tendinous morphological alterations in the Achilles tendon of runners

    Variants within the MMP3 gene are associated with achilles tendinopathy: possible interaction with the COL5A1 gene

    Get PDF
    Objectives: Sequence variation within the COL5A1 and TNC genes are known to associate with Achilles tendinopathy. The primary aim of this case-control genetic association study was to investigate whether variants within the matrix metalloproteinase 3 (MMP3) gene also contributed to both Achilles tendinopathy and Achilles tendon rupture in a Caucasian population. A secondary aim was to establish whether variants within the MMP3 gene interacted with the COL5A1 rs12722 variant to raise risk of these pathologies. Methods: 114 subjects with symptoms of Achilles tendon pathology and 98 healthy controls were genotyped for MMP3 variants rs679620, rs591058 and rs650108. Results: As single markers, significant associations were found between the GG genotype of rs679620 (OR = 2.5, 95% CI 1.2 to 4.90, p = 0.010), the CC genotype of rs591058 (OR = 2.3, 95% CI 1.1 to 4.50, p = 0.023) and the AA genotype of rs650108 (OR = 4.9, 95% CI 1.0 to 24.1, p = 0.043) and risk of Achilles tendinopathy. The ATG haplotype (rs679620, rs591058, and rs650108) was under-represented in the tendinopathy group when compared to the control group (41% vs 53%, p = 0.038). Finally, the G allele of rs679620 and the T allele of COL5A1 rs12722 significantly interacted to raise risk of AT (p = 0.006). No associations were found between any of the MMP3 markers and Achilles tendon rupture. Conclusion: Variants within the MMP3 gene are associated with Achilles tendinopathy. Furthermore, the MMP3 gene variant rs679620 and the COL5A1 marker rs12722 interact to modify the risk of tendinopathy. These data further support a genetic contribution to a common sports related injur

    Total posterior leg open wound management with free anterolateral thigh flap: case and literature review.

    Get PDF
    Soft tissue coverage of the exposed Achilles tendon is a unique reconstructive challenge. In this report, we describe the management of a large posterior leg wound with exposed Achilles tendon using a free anterolateral thigh (ALT) flap. A careful review of alternative reconstructive options is included, along with their respective advantages and disadvantages. A 32-year-old white man suffered a fulminant right lower extremity soft tissue infection requiring extensive debridement of the entire posterior surface of the right leg. The resulting large soft tissue defect included exposure of the Achilles tendon. Reconstruction of the defect was achieved with an ALT flap and split-thickness skin graft for coverage of the Achilles tendon and gastrocnemius muscle, respectively. The patient was able to ambulate independently within 2 months of the procedure

    Methodological and anatomical modifiers of Achilles tendon moment arm estimates implications for biomechanical modelling: Implications for biomechanical modelling

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University.Moment arms are important in many contexts. Various methods have been used to estimate moment arms. It has been shown that a moment arm changes as a function of joint angle and contraction state. However, besides the influence of these anatomical factors, results from recent studies suggest that the estimation of moment arm is also dependent on the methods employed. The overall goal of this thesis was to explore the interaction between the methodological and anatomical influences on moment arm and their effect on estimates of muscle-tendon forces during biomechanical modelling. The first experiment was a direct comparison between two different moment arm methods that have been previously used for the estimation of Achilles tendon moment arm. The results of this experiment revealed a significant difference in Achilles tendon moment arm length dependent on the moment arm method employed. However, besides the differences found, results from both methods were well correlated. Based on these results, methodological differences between these two methods were compared across different joint angles and contraction states in study two. Results of experiment two revealed that Achilles tendon moment arms obtained using both methods change in a similar way as a function of joint angle and contraction state. In the third experiment, results from the first two experiments were used to determine how methodological and anatomical influences on Achilles tendon moment arm would change muscle-tendon forces during the task of submaximal cycling. Results of the third experiment showed the importance of taking the method, ankle angle and contraction state dependence of Achilles tendon moment arm into account when using biomechanical modelling techniques. Together, these findings emphasis the importance of carefully considering methodological and anatomical modifiers when estimating Achilles tendon moment arm

    Comparison of Achilles tendon loading between male and female recreational runners

    Get PDF
    Recreational running is an activity with multiple reported health benefits for both sexes, however, chronic injuries caused by excessive and/or repetitive loading of the Achilles tendon are common. Males have been identified as being at an increased risk of suffering an injury to the Achilles tendon and as such, knowledge of differences in loading between the sexes may provide further information to better understand why this is the case. The aim of the current investigation was to determine whether gender differences in the Achilles tendon load exist in recreational runners. Fifteen male (age 26.74 ± 5.52 years, body height 1.80 ± 0.11 m and body mass 74.22 ± 7.27 kg) and fifteen female (age 25.13 ± 6.39 years, body height 1.68 ± 0.12 m and body mass 67.12 ± 9.11 kg) recreational runners volunteered to take part in the current investigation. Participants completed 10 trials running at 4.0 m•s-1 ±5% striking a force platform (1000 Hz) with their right foot. Ankle joint kinematics were synchronously recorded (250 Hz) using an optoelectric motion capture system. Ankle joint kinetics were computed using Newton-Euler inverse-dynamics. Net external ankle joint moments were then calculated. To estimate Achilles tendon kinetics the plantarflexion moment calculated was divided by an estimated Achilles tendon moment arm of 0.05 m. Differences in Achilles tendon kinetics were examined using independent sample t-tests (p<0.05). The results indicate that males were associated with significantly (p<0.05) greater Achilles tendon loads than females. The findings from this study support the notion that male recreational runners may be at greater risk of Achilles tendon pathology

    Active Auxetic Heel Support for Achilles Tendon Therapy

    Get PDF
    The Achilles tendon, which stretches from the calf to the ankle, can be injured due to repeated daily activities or overstretching. In severe cases a tear in the tendon can prevent athletes from performing in games as well as individuals from completing their daily tasks. Achilles tendon injuries affect millions of people. The severe pain that occurs upon injury can take months to improve and for the Achilles tendon to heal. Our goal is to design an auxetic support to provide comfort, help heal the tendon, and allow the individual to continue to be active through the natural healing process. The auxetic will help protect from further injury when the individual is active because when force is applied longitudinally it results in expansion laterally leading to a shortening of the tendon, which promotes healing. This support is fabricated using elastomer molds that incorporate auxetic patterning, which was determined through testing, to make the device active while the individual is moving while wearing the support. The pieces are individually made, then pieced together to form the heel portion of the support, which is the crucial component for Achilles tendon healing. With compression testing we discovered that the Young’s modulus of our auxetic structure is similar to that of the calcaneus tissue so it will be comfortable for the user. With shock absorption testing we were able to compare the energy absorption off our auxetic structure compared to bulk elastomers and foams. Overall, we believe the optimal auxetic heel support is comfortable and shock absorptive and heel supports should be made so they are capable of facilitating healing and protect from further injury of the Achilles tendon when an individual is active
    corecore