3 research outputs found

    Achieving High Throughput Ground-to-UAV Transport via Parallel Links

    No full text
    Abstract—Wireless data transfer under high mobility, as found in unmanned aerial vehicle (UAV) applications, is a challenge due to varying channel quality and extended link outages. We present FlowCode, an easily deployable link-layer solution utilizing multiple transmitters and receivers for the purpose of supporting existing transport protocols such as TCP in these scenarios. By using multiple transmitters and receivers and by exploiting the resulting antenna beam diversity and parallel transmission effects, FlowCode increases throughput and reception range. In emulation, we show that TCP over FlowCode gives greater goodput over a larger portion of the flight path, compared to an enhanced TCP protocol using the standard 802.11 MAC. In the process, we make a strong case for using trace-modulated emulation when developing distributed protocols for complex wireless environments. Index Terms—antenna beam diversity; 802.11; link layer; transport layer; UAV; network coding I

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    corecore