221 research outputs found

    Cooperative Multiplexing in the Multiple Antenna Half Duplex Relay Channel

    Full text link
    Cooperation between terminals has been proposed to improve the reliability and throughput of wireless communication. While recent work has shown that relay cooperation provides increased diversity, increased multiplexing gain over that offered by direct link has largely been unexplored. In this work we show that cooperative multiplexing gain can be achieved by using a half duplex relay. We capture relative distances between terminals in the high SNR diversity multiplexing tradeoff (DMT) framework. The DMT performance is then characterized for a network having a single antenna half-duplex relay between a single-antenna source and two-antenna destination. Our results show that the achievable multiplexing gain using cooperation can be greater than that of the direct link and is a function of the relative distance between source and relay compared to the destination. Moreover, for multiplexing gains less than 1, a simple scheme of the relay listening 1/3 of the time and transmitting 2/3 of the time can achieve the 2 by 2 MIMO DMT.Comment: 5 pages, 5 figures submitted to ISIT 200

    Product Multicommodity Flow in Wireless Networks

    Get PDF
    We provide a tight approximate characterization of the nn-dimensional product multicommodity flow (PMF) region for a wireless network of nn nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in both an information theoretic sense and for a combinatorial interference model (e.g., Protocol model). These provide an inner approximation to the n2n^2 dimensional capacity region. These results answer the following questions which arise naturally from previous work: (a) What is the significance of 1/n1/\sqrt{n} in the scaling laws for the Protocol interference model obtained by Gupta and Kumar (2000)? (b) Can we obtain a tight approximation to the "maximum supportable flow" for node distributions more general than the geometric random distribution, traffic models other than randomly chosen source-destination pairs, and under very general assumptions on the channel fading model? We first establish that the random source-destination model is essentially a one-dimensional approximation to the capacity region, and a special case of product multi-commodity flow. Building on previous results, for a combinatorial interference model given by a network and a conflict graph, we relate the product multicommodity flow to the spectral properties of the underlying graphs resulting in computational upper and lower bounds. For the more interesting random fading model with additive white Gaussian noise (AWGN), we show that the scaling laws for PMF can again be tightly characterized by the spectral properties of appropriately defined graphs. As an implication, we obtain computationally efficient upper and lower bounds on the PMF for any wireless network with a guaranteed approximation factor.Comment: Revised version of "Capacity-Delay Scaling in Arbitrary Wireless Networks" submitted to the IEEE Transactions on Information Theory. Part of this work appeared in the Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005, and the Internation Symposium on Information Theory (ISIT), 200

    Exploiting quantization uncertainty for enhancing capacity of limited-feedback MISO ad hoc networks

    Get PDF
    In this paper we investigate the capacity of random wireless networks in which transmitters are equipped with multiantennas. A quantized version of channel direction information (CDI) is also available, provided by the associated single antenna receivers. We adopt tools of stochastic geometry and random vector quantization to incorporate the impacts of interference and quantization errors, respectively. We first study the capacity of Aloha, and channel quality information (CQI)-based scheduling, whereby the transmissions decision in each transceiver pair depends on the strength of the CQI against a prescribed threshold. We then propose a new scheduling scheme, namely modified CQI (MCQI), by which the quantization error is effectively incorporated in the scheduling. Further we obtain the capacity of MCQI-based scheduling. Simulation results confirm our analysis and show that the proposed MCQI-based scheduling improves the capacity compared to the CQI-based scheduling and Aloha. It is also seen that the performance boost is more significant where the feedback capacity is low and the network is dense. In comparison with the case of high feedback capacity, the network capacity is not reduced by low feedback capacity in the MCQI-based scheduling. This is of practical importance since the network designer can save the feedback resources by employing MCQI-based scheduling without compromising the capacity and increasing the receivers’ complexity

    Opportunistic Scheduling and Beamforming for MIMO-SDMA Downlink Systems with Linear Combining

    Full text link
    Opportunistic scheduling and beamforming schemes are proposed for multiuser MIMO-SDMA downlink systems with linear combining in this work. Signals received from all antennas of each mobile terminal (MT) are linearly combined to improve the {\em effective} signal-to-noise-interference ratios (SINRs). By exploiting limited feedback on the effective SINRs, the base station (BS) schedules simultaneous data transmission on multiple beams to the MTs with the largest effective SINRs. Utilizing the extreme value theory, we derive the asymptotic system throughputs and scaling laws for the proposed scheduling and beamforming schemes with different linear combining techniques. Computer simulations confirm that the proposed schemes can substantially improve the system throughput.Comment: To appear in the Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, September 3 - 7, 200

    Robust Power Allocation and Outage Analysis for Secrecy in Independent Parallel Gaussian Channels

    Full text link
    This letter studies parallel independent Gaussian channels with uncertain eavesdropper channel state information (CSI). Firstly, we evaluate the probability of zero secrecy rate in this system for (i) given instantaneous channel conditions and (ii) a Rayleigh fading scenario. Secondly, when non-zero secrecy is achievable in the low SNR regime, we aim to solve a robust power allocation problem which minimizes the outage probability at a target secrecy rate. We bound the outage probability and obtain a linear fractional program that takes into account the uncertainty in eavesdropper CSI while allocating power on the parallel channels. Problem structure is exploited to solve this optimization problem efficiently. We find the proposed scheme effective for uncertain eavesdropper CSI in comparison with conventional power allocation schemes.Comment: 4 pages, 2 figures. Author version of the paper published in IEEE Wireless Communications Letters. Published version is accessible at http://dx.doi.org/10.1109/LWC.2015.249734
    corecore