781 research outputs found

    Video transmission over a relay channel with a compress-forward code design

    Get PDF
    There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios

    Fair and optimal resource allocation in wireless sensor networks

    Get PDF
    There is a large amount of research in wireless networks focuses on optimization of either network routing and power control alone. In contrast, this work aims at jointly optimizing the transmission power and routing path selection in order to optimize allocation of resources in interference constrained wireless environment. Moreover, we consider a multipath routing where multiple alternative paths are employed to transmit data between the end nodes. One of modern communication techniques that it applies to a network coding, though not explicitly implemented in this work. The proposed approach is first analyzed theoretically using Lagrangian optimization for a three-node scenario. We analyze this basic scenario, as it is essential for development of the overall multi-path routing schemes for multi-hop networks. The optimal solution for the three-node topology is replicated throughout the network to converge to a network-level solution. In contrast to existing studies, we explicitly consider interference from adjacent links, which varies with traffic flow thus optimizing the routing, and flow control decisions. The results and conclusions provide guidance as to the optimum routing decisions and a corresponding theoretical performance limits. The optimization of the throughput of the wireless network scenario is considered as a multi-variable optimization problem subject to flow and power constraints. Numerical analysis performed in Matlab-Simulink indicates that, given loose outage constraints, an optimal trade-off between the channel parameters renders optimum results even when the gain of the channel varies with time. The theoretical analysis and simulations demonstrate and validate that the channel capacity and efficiency are maximized when the routing decisions consider the network performance trade-offs. Next, the proposed routing and power control scheme is experimentally evaluated in hardware using universal software radio peripheral (USRP2). The USRP testbed utilizes the proposed multi-variable optimization algorithm. The communication system is implemented using GNU Radio software where the physical layer employs two direct-spread spectrum variants: (a) binary phase shift keying (DS-BPSK) and (b) orthogonal frequency division modulation (DS-OFDM) schemes. The experimental results are compared with the simulation results --Abstract, page iii

    Adaptive relay techniques for OFDM-based cooperative communication systems

    Get PDF
    Cooperative communication has been considered as a cost-effective manner to exploit the spatial diversity, improve the quality-of-service and extend transmission coverage. However, there are many challenges faced by cooperative systems which use relays to forward signals to the destination, such as the accumulation of multipath channels, complex resource allocation with the bidirectional asymmetric traffic and reduction of transmission efficiency caused by additional relay overhead. In this thesis, we aim to address the above challenges of cooperative communications, and design the efficient relay systems. Starting with the channel accumulation problem in the amplify-and-forward relay system, we proposed two adaptive schemes for single/multiple-relay networks respectively. These schemes exploit an adaptive guard interval (GI) technique to cover the accumulated delay spread and enhance the transmission efficiency by limiting the overhead. The proposed GI scheme can be implemented without any extra control signal. Extending the adaptive GI scheme to multiple-relay systems, we propose a relay selection strategy which achieves the trade-off between the transmission reliability and overhead by considering both the channel gain and the accumulated delay spread. We then consider resource allocation problem in the two-way decode-and-forward relay system with asymmetric traffic loads. Two allocation algorithms are respectively investigated for time-division and frequency-division relay systems to maximize the end-to-end capacity of the two-way system under a capacity ratio constraint. For the frequency-division systems, a balanced end-to-end capacity is defined as the objective function which combines the requirements of maximizing the end-to-end capacity and achieving the capacity ratio. A suboptimal algorithm is proposed for the frequency-division systems which separates subcarrier allocation and time/power allocation. It can achieve the similar performance with the optimal one with reduced complexity. In order to further enhance the transmission reliability and maintaining low processing delay, we propose an equalize-and-forward (EF) relay scheme. The EF relay equalizes the channel between source and relay to eliminate the channel accumulation without signal regeneration. To reduce the processing time, an efficient parallel structure is applied in the EF relay. Numerical results show that the EF relay exhibits low outage probability at the same data rate as compared to AF and DF schemes

    Energy Efficient, Cooperative Communication in Low-Power Wireless Networks

    Get PDF
    The increased interest in massive deployment of wireless sensors and network densification requires more innovation in low-latency communication across multi-hop networks. Moreover, the resource constrained nature of sensor nodes calls for more energy efficient transmission protocols, in order to increase the battery life of said devices. Therefore, it is important to investigate possible technologies that would aid in improving energy efficiency and decreasing latency in wireless sensor networks (WSN) while focusing on application specific requirements. To this end, and based on state of the art Glossy, a low-power WSN flooding protocol, this dissertation introduces two energy efficient, cooperative transmission schemes for low-power communication in WSNs, with the aim of achieving performance gains in energy efficiency, latency and power consumption. These approaches apply several cooperative transmission technologies such as physical layer network coding and transmit beamforming. Moreover, mathematical tools such as convex optimization and game theory are used in order to analytically construct the proposed schemes. Then, system level simulations are performed, where the proposed schemes are evaluated based on different criteria. First, in order to improve over all latency in the network as well as energy efficiency, MF-Glossy is proposed; a communication scheme that enables the simultaneous flooding of different packets from multiple sources to all nodes in the network. Using a communication-theoretic analysis, upper bounds on the performance of Glossy and MF-Glossy are determined. Further, simulation results show that MF-Glossy has the potential to achieve several-fold improvements in goodput and latency across a wide spectrum of network configurations at lower energy costs and comparable packet reception rates. Hardware implementation challenges are discussed as a step towards harnessing the potential of MF-Glossy in real networks, while focusing on key challenges and possible solutions. Second, under the assumption of available channel state information (CSI) at all nodes, centralized and distributed beamforming and power control algorithms are proposed and their performance is evaluated. They are compared in terms of energy efficiency to standard Glossy. Numerical simulations demonstrate that a centralized power control scheme can achieve several-fold improvements in energy efficiency over Glossy across a wide spectrum of network configurations at comparable packet reception rates. Furthermore, the more realistic scenario where CSI is not available at transmitting nodes is considered. To battle CSI unavailability, cooperation is introduced on two stages. First, cooperation between receiving and transmitting nodes is proposed for the process of CSI acquisition, where the receivers provide the transmitters with quantized (e.g. imperfect) CSI. Then, cooperation within transmitting nodes is proposed for the process of multi-cast transmit beamforming. In addition to an analytical formulation of the robust multi-cast beamforming problem with imperfect CSI, its performance is evaluated, in terms of energy efficiency, through numerical simulations. It is shown that the level of cooperation, represented by the number of limited feedback bits from receivers to transmitters, greatly impacts energy efficiency. To this end, the optimization problem of finding the optimal number of feedback bits B is formulated, as a programming problem, under QoS constraints of 5% maximum outage. Numerical simulations show that there exists an optimal number of feedback bits that maximizes energy efficiency. Finally, the effect of choosing cooperating transmitters on energy efficiency is studied, where it is shown that an optimum group of cooperating transmit nodes, also known as a transmit coalition, can be formed in order to maximize energy efficiency. The investigated techniques including optimum feedback bits and transmit coalition formation can achieve a 100% increase in energy efficiency when compared to state of the art Glossy under same operation requirements in very dense networks. In summary, the two main contributions in this dissertation provide insights on the possible performance gains that can be achieved when cooperative technologies are used in low-power wireless networks

    Video transmission over a relay channel with a compress-forward code design

    Get PDF
    There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios

    On the Design of a Novel Joint Network-Channel Coding Scheme for the Multiple Access Relay Channel

    Full text link
    This paper proposes a novel joint non-binary network-channel code for the Time-Division Decode-and-Forward Multiple Access Relay Channel (TD-DF-MARC), where the relay linearly combines -- over a non-binary finite field -- the coded sequences from the source nodes. A method based on an EXIT chart analysis is derived for selecting the best coefficients of the linear combination. Moreover, it is shown that for different setups of the system, different coefficients should be chosen in order to improve the performance. This conclusion contrasts with previous works where a random selection was considered. Monte Carlo simulations show that the proposed scheme outperforms, in terms of its gap to the outage probabilities, the previously published joint network-channel coding approaches. Besides, this gain is achieved by using very short-length codewords, which makes the scheme particularly attractive for low-latency applications.Comment: 28 pages, 9 figures; Submitted to IEEE Journal on Selected Areas in Communications - Special Issue on Theories and Methods for Advanced Wireless Relays, 201

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions
    • …
    corecore