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ABSTRACT

The increased interest in massive deployment of wireless sensors and network densifica-

tion requires more innovation in low-latency communication across multi-hop networks.

Moreover, the resource constrained nature of sensor nodes calls for more energy efficient

transmission protocols, in order to increase the battery life of said devices. Therefore, it

is important to investigate possible technologies that would aid in improving energy effi-

ciency and decreasing latency in wireless sensor networks (WSN) while focusing on appli-

cation specific requirements. To this end, and based on state of the art Glossy, a low-power

WSNflooding protocol, this dissertation introduces two energy efficient, cooperative trans-

mission schemes for low-power communication in WSNs, with the aim of achieving per-

formance gains in energy efficiency, latency and power consumption. These approaches

apply several cooperative transmission technologies such as physical layer network cod-

ing and transmit beamforming. Moreover, mathematical tools such as convex optimization

and game theory are used in order to analytically construct the proposed schemes. Then,

system level simulations are performed, where the proposed schemes are evaluated based

on different criteria.

First, in order to improve over all latency in the network as well as energy efficiency,

MF-Glossy is proposed; a communication scheme that enables the simultaneous flooding

of different packets from multiple sources to all nodes in the network. Using a communi-

cation-theoretic analysis, upper bounds on the performance of Glossy and MF-Glossy are

determined. Further, simulation results show that MF-Glossy has the potential to achieve

several-fold improvements in goodput and latency across a wide spectrum of network con-

figurations at lower energy costs and comparable packet reception rates. Hardware imple-

mentation challenges are discussed as a step towards harnessing the potential ofMF-Glossy

in real networks, while focusing on key challenges and possible solutions.

Second, under the assumption of available channel state information (CSI) at all nodes,

centralized and distributed beamforming and power control algorithms are proposed and

their performance is evaluated. They are compared in terms of energy efficiency to stan-

dard Glossy. Numerical simulations demonstrate that a centralized power control scheme

can achieve several-fold improvements in energy efficiency over Glossy across a wide spec-
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trum of network configurations at comparable packet reception rates. Furthermore, the

more realistic scenario where CSI is not available at transmitting nodes is considered. To

battle CSI unavailability, cooperation is introduced on two stages. First, cooperation be-

tween receiving and transmitting nodes is proposed for the process of CSI acquisition,

where the receivers provide the transmitters with quantized (e.g. imperfect) CSI. Then,

cooperation within transmitting nodes is proposed for the process of multi-cast transmit

beamforming. In addition to an analytical formulation of the robust multi-cast beamform-

ing problemwith imperfect CSI, its performance is evaluated, in terms of energy efficiency,

through numerical simulations. It is shown that the level of cooperation, represented by

the number of limited feedback bits from receivers to transmitters, greatly impacts energy

efficiency. To this end, the optimization problem of finding the optimal number of feedback

bits B is formulated, as a programming problem, under QoS constraints of 5% maximum

outage. Numerical simulations show that there exists an optimal number of feedback bits

that maximizes energy efficiency. Finally, the effect of choosing cooperating transmitters

on energy efficiency is studied, where it is shown that an optimum group of cooperating

transmit nodes, also known as a transmit coalition, can be formed in order to maximize

energy efficiency. The investigated techniques including optimum feedback bits and trans-

mit coalition formation can achieve a 100% increase in energy efficiency when compared

to state of the art Glossy under same operation requirements in very dense networks.

In summary, the two main contributions in this dissertation provide insights on the

possible performance gains that can be achieved when cooperative technologies are used

in low-power wireless networks.



ZUSAMMENFASSUNG

Das zunehmende Interesse an einem massiven Einsatz von drahtlosen Sensoren und einer

Verdichtung des Netzwerks erfordert weitere Innovation bei der Kommunikation über

Multi-Hop-Netzwerke. Darüber hinaus erfordert die ressourcenbeschränkte Beschaffen-

heit der Sensorknoten energieeffizientere Übertragungsprotokolle, um die Akkulaufzeit

der Geräte zu erhöhen. Daher ist es wichtig, mögliche Technologien zu untersuchen, die

zur Verbesserung der Energieeffizienz und zur Verringerung der Latenzzeiten in niederen-

ergetischen drahtlosen Sensornetzwerken (Wireless Sensor Networks, WSN) beitragen

und sich gleichzeitig auf anwendungsspezifische Anforderungen konzentrieren.

Zu diesem Zweck und auf der Grundlage des Standes der Technik Glossy, ein energies-

parendes WSN Flutungsprotokoll, stellt diese Dissertation zwei energieeffiziente, koop-

erative Übertragungskonzepte für die niederenergetischen Kommunikation in WSNs vor,

mit dem Ziel, Verbesserungen in Energieeffizienz, Latenz und Leistungsaufnahme zu er-

reichen. Diese Konzepte wenden mehrere kooperative Übertragungstechnologien an, wie

z.B. Netzwerkcodierung in der physikalische Schicht und Strahlformung auf Senderseite.

Darüber hinaus werdenmathematischeMethodenwie konvexe Optimierung und Spielthe-

orie genutzt, um die vorgeschlagenen Konzepte analytisch zu konstruieren. Anschließend

werden Simulationen auf Systemebene durchgeführt, bei denen die vorgeschlagenen Sys-

teme nach verschiedenen Kriterien bewertet werden.

Erstens wird MF-Glossy vorgeschlagen, um die Gesamtlatenzzeit im Netzwerk sowie die

Energieeffizienz zu verbessern; ein Kommunikationsschema, das die gleichzeitige Flutung

verschiedener Pakete von mehreren Quellen zu allen Knoten im Netzwerk ermöglicht. Mit

Hilfe einer nachrichtentheoretischen Analyse werden die oberen Grenzen der Leistungs-

fähigkeit von Glossy und MF-Glossy bestimmt. Darüber hinaus zeigen Simulationsergeb-

nisse, dass MF-Glossy das Potenzial hat, über ein breites Spektrum von Netzwerkkon-

figurationen bei niedrigeren Energiekosten und vergleichbaren Paketempfangsraten eine

mehrfache Verbesserung von Goodput und Latenz zu erreichen. Die Herausforderungen

bei der Implementierung in Hardware werden diskutiert, um das Potenzial von MF-Glossy

in realen Netzwerken zu nutzen, wobei der Schwerpunkt auf den wichtigsten Heraus-

forderungen und möglichen Lösungen liegt.
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Zweitens, werden unter der Annahme der verfügbaren Kanalinformationen (Chan-

nel State Information, CSI) an allen Knoten sowohl zentralisierte als auch verteilte

Strahlformungs- und Stromregelungsalgorithmen vorgeschlagen und deren Performance

bewertet. Sie werden in Bezug auf ihre Energieeffizienz mit dem Standard Glossy ver-

glichen. Numerische Simulationen zeigen, dass ein zentralisiertes Stromversorgungss-

chema eine mehrfache Verbesserung der Energieeffizienz gegenüber Glossy über ein bre-

ites Spektrum von Netzwerkkonfigurationen bei vergleichbaren Paketempfangsraten erre-

ichen kann. Darüber hinaus wird das realistischere Szenario berücksichtigt, bei demCSI an

den Sendeknoten nicht verfügbar sind. Um die Nichtverfügbarkeit von CSI zu bekämpfen,

wird die Zusammenarbeit auf zwei Stufen eingeführt. Als erstens die Zusammenarbeit

zwischen Empfangs- und Sendeknoten für den Prozess des begrenzten CSI-Feedback. Da-

raufhin die Zusammenarbeit innerhalb der Sendeknoten für den Prozess der Multi-Cast-

Sende-Strahlformung. Zusätzlich zu einer analytischen Formulierung des robusten Multi-

Cast Sende-Strahlformung-Problems mit unvollständigen CSI wird dessen Performance

bewertet. Es wird gezeigt, dass der Grad der Zusammenarbeit, dargestellt durch die An-

zahl der begrenzten Rückmeldungsbits von Empfängern zu Sendern, die Energieeffizienz

stark beeinflusst. Zu diesem Zweck wird das Programmierproblem zum Auffinden der

optimalen Anzahl von Rückmeldungsbits B unter QoS-Bedingungen von 5% maximaler

Ausfallrate formuliert. Numerische Simulationen zeigen, dass es eine optimale Anzahl von

Rückmeldungsbits B gibt, die die Energieeffizienz maximieren. Schließlich wird der Ein-

fluss derWahl kooperierender Sender auf die Energieeffizienz studiert, wobei gezeigt wird,

dass eine optimale Gruppe kooperierender Sendeknoten, auch bekannt als Sendekoalition,

gebildet werden kann, um die Energieeffizienz zu maximieren. Die untersuchten Tech-

niken, einschließlich optimaler Rückmeldungsbits und Sendekoalitionsbildung, können

eine 100-prozentige Steigerung der Energieeffizienz im Vergleich zum Stand der Technik

Glossy bei gleichen Betriebsanforderungen in sehr dichten Netzwerken erreichen.

Zusammenfassend bieten die beiden Hauptthemen dieser Dissertation Einblicke in die

möglichen Performancesteigerungen, die erzielt werden können, wenn kooperative Tech-

nologien in niederenergetischen Drahtlosnetzwerken eingesetzt werden.
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CHAPTER

1
INTRODUCTION

The use of vastly distributed wireless sensors has become very important in many fields

of everyday life thanks to their small size, minimal energy consumption, low cost and

ability to operate autonomously with limited maintenance effort. Some of those fields are

commercial applications, such as smart homes, where sensors monitor home appliances

and minimize energy consumption by controlling unnecessary energy demands [1]. Other

fields are scientific applications, such as environmental monitoring, where these sensors

have to operate independently and sometimes under extreme conditions (i.e. space explo-

ration [2]). In emergency and health applications, sensor networks are utilized to make

life easier and safer by monitoring personal health and activity data in order to perform

accurate situation assessment [3]. While in industrial applications, sensor networks are

used to monitor operation conditions and maintain quality of production [4].

As a result of their importance, wireless sensor networks (WSN) have been heavily in-

vestigated for the past decade in both physical and network layers. WSNs usually operate

using low power communications following the IEEE 802.15.4 standards [5] where any

transmission from a single node is not only heard by the intended receiver but also by

nearby nodes. Moreover, when operating in the 2.4 GHz industrial scientific and medical

(ISM) band, sensor devices have to share the available frequencies with other more pow-

erful technologies such as WiFi. This is usually viewed as undesirable interference where

receivers are instructed to avoid it and transmission protocols are optimized to limit it.

However, in applications such as environmental monitoring and self-organizing networks,

where knowledge about the network topology is limited or non-existent, routing informa-

tion from a source node to a destination node and through a network of sensor nodes with

limited capabilities, is very challenging and resource consuming. At the same time, these

applications require high rate data collection systems for full functionality. These systems

rely on time synchronization in order to calibrate measurements and network flooding to
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send control signals such as adjusting sampling rates and initiating data transfers. This

should be done as fast as possible to avoid clock synchronization errors. To satisfy these

requirements, a new flooding mechanism for WSNs Glossy is introduced in [6] where time

synchronization between nodes is implicitly achieved as the information packets travel

through the network. Unlike most WSNs communication protocols, Glossy exploits inter-

ference instead of treating it as a problem like previously mentioned. In fact, it enforces

simultaneous transmissions of the same information resulting in constructive interference

at receiver nodes. It achieves 99% flooding reliability and micro second time synchroniza-

tion. Low-Power Wireless Bus (LWB) is introduced in [7] based on Glossy, where it uses

fast floods to transfer all data in the network. First, each transmission has to be scheduled

by a central node where each sensor node has to request transmission slots in accordance

with its operational demand. Then, communication is performed in a round based manner

with a maximum round time of up to 30 seconds.

High performance, simplicity and low operational cost make Glossy seem perfect, but

there are some challengeswhen usingGlossy as a base for communication in a dense sensor

network. In order for Glossy to achieve high performance results, it employs concurrent

transmissions to enforce constructive interference at the receiver. Benefits of concurrent

transmissions have been theoretically investigated [8] and experimentally demonstrated

[9]. Moreover, the success of concurrent transmissions is proven to depend on simulta-

neously transmitting identical signals with a maximum synchronization error of 0.5 μsec.

To this end, Glossy limits the number of concurrent information flows in the network to

a single flow, by forcing nodes to wait and only transmit new information in assigned

time slots. This hinders Glossy unsuitable for real time or delay sensitive applications

without upgrades. Moreover, in order to achieve extreme simplicity and avoid software

delays accompanying preliminary signal processing, sensor nodes using Glossy always

use maximum power while transmitting. This increases energy consumption resulting in

degraded energy efficiency and much lower battery life time. That being said, there are

opportunities to further develop this technology. In the conclusion section of [10], it is

noted that techniques such as distributed beamforming and lattice codes can promise sig-

nificant improvements to the performance of concurrent transmission dependent flooding

protocols such as Glossy. To address the previous issues, this dissertation poses several

research questions and answers them by using transmission technologies to design novel

communication protocols for WSNs, where the high reliability of Glossy is achieved while

improving both latency and energy efficiency.
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1.1 Challenges in Network Flooding using Glossy

Using Glossy as a network flooding protocol in WSNs has many advantages such as high

reliability, simple transceiver design and embedded network wide clock synchronization.

It can even achieve low latency in up to 8-hop size networks. However, there exists some

obstacles in order to use it in highly dense networks or in scenarios with high network

traffic. Figure 1.1 shows a simple illustration of a 2-hop WSN where nodes N1 and N2

want to transmit data packets A and B, respectively, using LWB. Nodes in green and blue

are in transmit and receive mode, respectively.

Latency

Before the start of communication using LWB as shown in Figure 1.1a, each node looking

to transmit new information must submit a transmission request to a central arbitrator

(not depicted in the figure). Then, a transmission slot is assigned to each node following a

first come, first served basis. Finally, transmission is carried out in a round basis and in the

form of individual Glossy floods as shown in Figure 1.1b to Figure 1.1e. First, N1 transmits

A at maximum power. NodesN3 andN4 receive A and re-transmit it simultanously in the

following time slot as shown in Figure 1.1c. After node 2 receives A and the first Glossy

flood is over, it proceeds to transmit B at maximum power as in Figure 1.1d. Then, similar

to Figure 1.1c, nodes N3 and N4 re-transmit B in Figure 1.1e. Finally, node N1 receives B

and the second Glossy flood terminates. This results in nodeN2 having double the latency

of nodeN1, because it had to wait until the first flood was over before initiating the second

flood and transmittingB. This is fine for small networks like the one depicted in this exam-

ple. However, in dense networks where large number of nodes require transmission slots

regularly, it can lead to long delays for those scheduled to the last transmission slot. This

issue calls for a communication protocol that reduces average latency in dense networks

while preserving reliability of communication.

Energy Efficiency

A wireless sensor is typically a battery operated device with limited energy capacity,

equipped with a low-power and low-rate radio transceiver. For example, one of the most

popular commercial off-the shelf sensor nodes in WSNs and a typical device using Glos-

sy is the Tmote Sky [11]. This device is equipped with a ChipCon CC2420 transceiver

that operates in the 2.4GHz ISM band with compliance with the IEEE 802.15.4 standard,
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N3

N4

N2

B

N1

A

Transmitting node Receiving node

(a) Time slot 0: Before the protocol starts, each node with information to send has to request a

transmission slot from a central arbitrator not depicted in this illustration. Nodes N1 and N2

would like to send data packetsA andB, respectively. The central arbitrator replies with a time

schedule where N1 can transmit first, then N2.

N3

N4

N2

B

N1 A

(b) Time slot 1: Node N1 transmits A at maximum power. Nodes N3 and N4 receive A correctly.

Node N2 is out of reception range.

N3

A

N4
A

N2

B

N1A

(c) Time slot 2: Thanks to the embedded synchronization of Glossy, nodesN3 andN4 can simulta-

neously transmit A at maximum power. Node N2 receive A correctly.
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N3

N4

N2 ABN1A

(d) Time slot 3: Node N2 transmits B at maximum power. Nodes N3 and N4 receive B correctly.

Node N1 is out of reception range.

N3

B

N4
B

N2 A BN1A

(e) Time slot 4: Nodes N3 and N4 can simultaneously transmit B at maximum power. Node N1

receive B correctly. All nodes have A and B.

Figure 1.1: Transmission steps of LWB in a simple 2-hop network consisting of 4 identical

nodes. Nodes N1 and N2 must transmit data packets A and B, respectively.

Best case transmission scenario takes a minimum of 4 time slots for all nodes

to receive both A and B.
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while having a maximum transmit power and data rate of 0dBm and 250Kbps, respectively.

The entire device is powered by only two AA batteries, which constitutes a limit on avail-

able energy and therefore, operating life time before batteries have to be replaced. This

can prove challenging in applications like upper atmosphere monitoring, under water and

space exploration; if not impossible. This makes energy efficiency the most important as-

pect when designing aWSN. The energy consumption of Tmote Sky is strongly affected by

the radio transceiver, which is in idle (sleep) mode most of the time in order to save energy.

Glossy takes advantage of the includedmicro second synchronization in order to have very

small active times. Hence, reducing the energy consumed by the transceiver. However, it

always uses the maximum transmit power regardless of the situation. For example, in the

scenario depicted in Figure 1.1, each transmitting node uses the maximum available trans-

mit power of 0dBm, while total energy consumption in the network will increase as the

number of nodes in the network increases. Further, as the number of nodes in the network

increases, the time spent in receiving mode, as well as the numbers of re-transmissions,

increases. This results in an increased per-node energy consumption that can drastically

reduce the battery life-time of the device. Changing that requires optimizing the energy

consumption of the transceiver without affecting the current performance.

Tackling the previous challenges in a resource limited scenario such as WSNs requires

us to use innovative transmission technologies, which presents another challenge.

Channel Information

In order to optimize transmit energy consumption, channel state information (CSI) must

be available at the transmitter. However, in real network deployments, transmitters do not

usually have CSI. Hence, known pilot signals may be sent from receivers to transmitters

in order to estimate CSI, while relying on channel reciprocity. However, this constitutes

an overhead in terms of energy consumption, as well as latency. This is a challenge in

scenarios where sensor nodes are not aware of the network topology and requires inno-

vative, energy efficient ways to exchange or make available the channel information for

transmitting nodes in order to make calculated decisions that improves energy efficiency.
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1.2 Scope and Objectives of the Dissertation

With the growing interest in massive deployment of wireless sensors and network den-

sification, it is of paramount importance to investigate possible technologies that would

aid in improving energy efficiency and decreasing latency in WSNs while focusing on the

aforementioned challenges. To this end and based on state of the art Glossy, this disser-

tation investigates several approaches in order to achieve performance gains in energy

efficiency, latency and energy consumption. This is done while using different combina-

tions of transmission technologies such as network coding and transmission beamforming

as well as mathematical tools such as convex optimization and game theory. First, investi-

gated approaches are analytically constructed using mathematical means. Then, they are

evaluated thoroughly using software simulations and judged based on different criteria

depending on the used approach. Hardware implementation of the proposed approaches

is discussed from a feasibility point of view. However, it is important to note that actual

implementation lays outside the scope and time frame of this dissertation and is left for

possible extensions and future work. Instead, we only focus on the theoretical formulation

of protocol operations and software validation.

For a simple 2-hop network consisting of 4 nodes, LWB can be used to transmit 2 differ-

ent data packets. In a best case scenario where no re-transmissions are required, a total of 4

time slots are needed to complete the operation. In this dissertation the following research

questions are addressed and answered:

1. How can multiple nodes be enabled to flood the network with different data packets

simultaneously and how does this affect performance including energy efficiency

and latency?

2. How can transmission power be optimized and how does this affect performance

including energy efficiency and latency?

3. How can channel information be made available without excessive

transceiver complexity and communication overhead?

4. How does partial channel information affect performance compared to the optimal

case of perfect channel information?

5. How can wireless sensor nodes dynamically self-organize into cooperative groups

in order to improve energy efficiency?
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1.3 Contributions and Outline of the Dissertation

In this dissertation we concentrate on answering the previous research questions. We start

by proposing a novel WSN flooding communication protocol that allows multiple flows of

different packets. Then, we propose an approach using optimization techniques and trans-

mit beamforming in order to optimize transmit power and improve energy efficiency under

perfect channel information. After that, we suggest a robust beamforming method using

quantized feedback for more realistic scenarios where channel information is not available.

Finally, we investigate the optimal number of cooperative transmitters that maximizes en-

ergy efficiency. The main contributions are detailed as follows:

Multi-flow Glossy - Chapter 3

Emerging applications like wireless control or drone swarms require low-latency comm-

unication across multiple hops among a large number of both static and mobile devices.

Recent protocols based on concurrent transmissions can meet most of these requirements.

In particular, Glossy comes extremely close to the minimum lower latency bound for flood-

ing a single packet. However, when multiple packets need to be exchanged, the overall

latency increases linearly since each packet must be mapped onto a distinct Glossy flood.

This chapter explores the opportunities and challenges of physical-layer network coding

to exchange more packets per unit of time. To this end, we presentMulti-flow Glossy (MF-

Glossy), a communication scheme that simultaneously floods different packets from mul-

tiple sources to all nodes in the network. We determine upper bounds on the performance

of Glossy and MF-Glossy using a communication-theoretic analysis. Further, we show by

simulation that MF-Glossy has the potential to achieve several-fold improvements in good-

put and latency across a wide spectrum of network configurations at lower energy costs

and comparable packet reception rates. On the road to harnessing this potential in real

low-power networks, we discuss the hardware implementation challenges and focus on

the key research challenges and possible solutions lying ahead in order to harness the full

power of MF-Glossy in embedded systems. The contributions in this chapter are partially

published in the following publication:

A. Abdelkader, J. Richter, E. A. Jorswieck, and M. Zimmerling. “Multi-flow Glossy: Physical-

layer Network Coding Meets Embedded Wireless Systems”. In: Proceedings of the International

Conference on Computer Communications and Networks. Vancouver, Canada, July 2017 .
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Beamforming with Perfect CSI - Chapter 4

We consider a device-to-device wireless multi-hop communication scenario with resource-

constrained devices that require energy-efficient connectivity. Based on the recently pro-

posed Glossy network flooding protocol and under the assumption of available channel

information at all nodes, we develop both centralized and distributed beamforming and

power control algorithms, and analyze their performance. The proposed schemes are com-

pared in terms of their energy efficiency to the standard Glossy. Numerical simulations

demonstrate that a centralized power control scheme can achieve several-fold improve-

ments in energy efficiency over Glossy across a wide spectrum of network configurations

at comparable packet reception rates. We also show how power control and beamforming

can be applied in a distributedmanner and demonstrate achievable gains compared to stan-

dard Glossy. The results indicate that adaptive power control and distributed beamforming

strategies improve energy efficiency, which is one important performance indicator in 5G

Internet-of-Things applications. The contributions in this chapter are partially published

in the following publication:

A. Abdelkader, E. Jorswieck, andM. Zimmerling. “Centralized and Distributed Optimum Power

Control and Beam-forming in Network Flooding”. In: European Wireless 2017; 23th European

Wireless Conference. May 2017, pp. 1–6 .

Robust Beamforming with Limited Feedback - Chapter 5

The energy efficiency of communication plays a significant role in network design and

operation, when having power-limited devices in a multi-hop communication scenario.

Based on the recently proposed Glossy network flooding approach, we introduce coopera-

tion on 2 stages. First, between receiving and transmitting nodes for the process of channel

estimation. Then, within transmitting nodes and formulate a robust multi-cast beamform-

ing problem with imperfect channel state information, and analyze its performance. The

level of cooperation is dependent on the number of limited feedback bits from receivers to

transmitters. First, the impact of number of limited feedback bits B on energy efficiency

is studied, and the programming problem for finding the optimal B is formulated subject

to a maximum outage constraint of 5%. Numerical simulations show that there exists an

optimal number of feedback bits that maximizes energy efficiency. Second, the effect of

the number of cooperating transmitters on energy efficiency is investigated. Results show

that an optimum group of cooperating transmit nodes, also known as a transmit coalition,
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can be formed in order to maximize energy efficiency. Results show that the investigated

techniques including optimum feedback bits and transmit coalition formation can achieve

a 100% increase in energy efficiency when compared to state of the art Glossy under same

operation requirements in very dense networks. The contributions in this chapter are par-

tially published in the following publications:

A. Abdelkader and E. A. Jorswieck. “Robust Energy-Efficient Power Control and Beam-forming

in Network Flooding”. In: WSA 2018; 22nd International ITGWorkshop on Smart Antennas. Mar.

2018, pp. 1–7.

A. Abdelkader and E. Jorswieck. “Robust adaptive distributed beamforming for energy-efficient

network flooding”. In: EURASIP Journal on Wireless Communications and Networking 2019.1

(June 2019), p. 154.

According to Figure 1.2, this dissertation is organized as follows: In Chapter 2, we present

related work on low powerWSNs, network flooding and concurrent transmissions leading

to our choice of state-of-the-art Glossy, then we explain the operation of Glossy and LWB.

In Chapter 3, we propose MF-Glossy, a novel WSN flooding protocol that enables multiple

simultaneous data flows in the network using physical layer network coding. In Chapter 4,

we discuss an approach using transmit beamforming to improve energy efficiency in net-

work flooding. The discussed approach is analyzed under assumptions of perfect channel

information. Then, we consider the more realistic scenario of no channel information in

Chapter 5, where we propose an approach using robust beamforming and quantized feed-

back in order to optimize energy efficiency. Moreover, we explore the forming of coopera-

tive coalitions and whether there exists an optimum size that maximizes energy efficiency.

Finally, we conclude this dissertation and suggest future work in Chapter 6.
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Figure 1.2: Graphical illustration of the contents of this dissertation.
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PRELIMINARIES





CHAPTER

2
BACKGROUND AND STATE OF THE ART

In this chapter we present a summary of related works onWSNs to this dissertation as well

as important background information on state-of-the-art Glossy. First, we introduce the

basics of low-power wireless networks leading to the choice of working on network flood-

ing applications. Then, we review network flooding as a communication technology and

present relevant works while motivating our focus on Glossy. After that, we discuss con-

current transmissions and its importance in order to classify previously discussed works

in the literature. Finally, we explain the operation of state-of-the-art Glossy and introduce

the advantages of building on it.

2.1 Low-power wireless Networks

Low-power wireless networking based on the IEEE 802.15.4 standard [5] has received a

lot of attention over the last decade, especially in the sensor network community. Works

in this area investigate the theoretical aspects [8, 9], as well as propose communication

protocols for applications ranging from industrial automation [4, 12] to information dis-

semination or network flooding [6, 7, 13]. The 802.15.4 is developed as the communication

standard for low-rate wireless personal area networks (LR-WPANs). It clearly specifies

possible settings for both the physical and the MAC layers for LR-WAPNs. With lower

data rate, simple connectivity and extended battery life time in mind, it serves as the foun-

dation of upper layer communication protocols such as ZigBee [14] andWirelessHart [15].

It dictates that communication can occur in the 800MHz, 900MHz or 2.4 GHz ISM bands.

While any of these bands can be used by 802.15.4 supported devices, the 2.4 GHz band

is more popular due to its worldwide availability, where the 800MHz band is specified

primarily for European use and the 900MHz band can only be used in FCC regulated ter-

ritories. When operating in the 2.4 GHz ISM band, devices have to share the available fre-
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quencies with other more powerful technologies such as WiFi which operates according

to the IEEE 802.11 standard. Moreover, at 2.4 GHz the IEEE 802.15.4 standard stipulates a

maximum data rate of 250 kbps using offset quadrature phase-shift keying (O-QPSK) with

half-sine pulse shaping and direct-sequence spread spectrum (DSSS) in order to match the

limited resources available on sensor nodes. However, due to communication overhead,

only half the data rate is actually achievable. Due to the small communication range of

only a few tens of meters, the devices collaborate via multi-hop communication.

Real deployments of low-power wireless networks range in application from permafrost

monitoring in high alpine regions [16] to closed-loop lighting control in road tunnels [17].

However, many of these applications rely on a common notion of time across nodes (e.g.,

to correlate sensor readings) and network flooding (e.g., to send a command to all nodes).

This demonstrates the importance of network flooding in low-power wireless networks as

further explained in Section 2.2.

2.2 Network Flooding

Network flooding (also commonly known as data dissemination) is a communication pro-

tocol that delivers a message from one node to all other nodes in the network. Flooding is

used in many applications ranging from environmental monitoring to industrial automa-

tion, in order to perform clock synchronization [18, 19], code distribution [20], or one-to-

one routing [21]. For many of these applications, the main research focus is reliability and

energy efficiency because of the limited battery lifetime of the sensor nodes. Many net-

work flooding approaches are presented in literature over the years, where the simplest

form is Simple Flooding, where each node that receives a new message forwards it to a

neighboring node. However, this results in excessive redundancy and network congestion

[22]. A method to treat this problem is presented in [23], where a flooding overlay struc-

ture (FOS) is proposed to increase network lifetime and reduce the overhead of flooding

in a sensor network. Another example is Trickle, a network flooding algorithm for code

propagation in WSNs [24]. Trickle uses an individual timer at each node to periodically

send out a summary to neighboring nodes but obligates the node to stay silent in case of

receiving information similar to its own. Unfortunately, Trickle is not suitable for real-

time applications due to the long time until stable operation, which can go up to a few

minutes. Recently, a significant contribution is made by proposing the Glossy flooding

protocol [6]. As described in Section 2.4, the Glossy protocol provides both fast, reliable

one-to-all communication and accurate network-wide time synchronization in multi-hop
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wireless networks. In real IEEE 802.15.4 network deployments, consisting of more than 100

nodes, Glossy achieves unparalleled packet failure rates below 10−4 and latency of a few

milliseconds, while synchronizing nodes to within sub-microsecond accuracy. The simple,

yet disruptive approach of Glossy and the availability of an open-source implementation

has arguably created a movement in the low-power wireless networking community, as

visible, for example, from the many works building on the basic flooding primitive to im-

prove the performance of stable network functionality, such as in-network processing [25]

and data dissemination [26], or to enable entirely new networking abstractions suitable for

mission-critical CPS applications [7, 27]. Thus, any innovation at the level of the commu-

nication primitive would immediately benefit the many works using it. Most of the works

building on the Glossy primitive make use of concurrent transmissions in order to achieve

high performance gains. Glossy achieves this by using concurrent transmissions of identi-

cal packets frommultiple senders resulting in constructive interference and capture effects

at receivers. Both phenomena are explained in Section 2.3.

2.3 Concurrent Transmissions

Concurrent transmission occurs when two or more nodes transmit signals simultaneously

to a shared receiver node within the 1-hop range. At the receiver, the sum of both signals is

received. In [28] theoretical gains are demonstrated when spatially diverse wireless trans-

mitters cooperate to relay information. Later on, a series of experiments are presented in

[29, 30] to further investigate the gains of concurrently sent information from multiple

transmitters. In SourceSync [10] concurrent transmission gains are demonstrated in prac-

tice using an FPGA-based 802.11-like radio platform. Reduced bit error rates and higher

throughput are demonstrated when multiple nodes transmit the same packet at the same

time on the same OFDM subcarrier. In 2008, Backcast [31] utilizes automatically gener-

ated ACK reply signals in order to let transmitters know that at least one node successfully

received the transmitted signal. It is also demonstrated for the first time that identical

hardware-generated ACK signals in receiving nodes constructively interfere at the trans-

mitter. Although Backcast does not depend on CI, it directly proves that collisions are not

necessarily bad for reception. Therefore, A-MAC [32] and Flip-MAC [33] build upon Back-

cast and propose receiver-initiated protocols. Receivers periodically send out ACK request

frames according to the IEEE 802.15.4 standard. Nodes that need to transmit will send an

automatically generated ACK. Then, receiver nodes let their radio on while waiting for

transmission. Until this point, only hardware generated ACK signals were concurrently
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transmitted. Flash [13] transmits data packets from multiple nodes simultaneously ensur-

ing that receivers receive the data from, at least, one sender. While previous works utilize

concurrent transmission, they achieve gains in performance due to the capture effect [34].

Capture Effect

The capture effect in frequency modulation (FM) receivers was first introduced in [34] as

a phenomena that occurs when a FM receiver has two different FM signals with unequal

amplitudes at the same time. According to [25], the capture effect is defined such that; a

receiver has a higher probability of successfully decoding a signal if the received signal is

3 dBm higher than the sum of interfering signals. However, the stronger signal must also

arrive within 160ms of the interfering signals. This is also applicable when two or more

nodes transmit different signals. The previous requirements are confirmed experimentally

in [35], where it is shown that the capture effect happens at the receiver when a stronger

signal arrives no later than 96μ s later than the preamble duration of the weaker signal. In

few cases, signalsmight interfere destructively resulting in a partial or a complete reception

error at the receiver. However, full destructive interference rarely happens which results

in a high probability of successfully receiving packets due to CI and/or capture effect.

Constructive Interference

CI occurs as a possible side effect of concurrent transmissions, when multiple nodes trans-

mit the same data packet simultaneously, which results in signal superposition at receiv-

ing nodes. Hence, data packets can be decoded successfully with high probability due to

higher signal strength at receiving nodes. Non-destructive interference effects are reported

in [31] when multiple sensor nodes simultaneously transmit identical, short acknowledg-

ment frames generated in hardware. This observation also applies to variable-size packets

generated in software as proven in [6], where Glossy is introduced. A statistical model

for the one hop delay is derived in [35], where it is demonstrated that with a large fre-

quency drift at the oscillators and long packet lengths, it is hard to obtain CI. Moreover,

an experimentally validated model for the prediction of successful packet reception is pro-

posed, where both capture effect and CI are considered. CI from the receiver perspective

is studied in [36], where multiple factors affecting CI performance are inferred both theo-

retically and experimentally. The most important factor in deciding if CI occurs or not is

that the time offset between concurrent transmissions must be below 500 ns. Therefore, a

high level of synchronization is needed, which is provided by Glossy down to 0.5 μs for an
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8-hop network. As described in Section 2.4, the Glossy protocol provides both one-to-all

communication and time synchronization in multi-hop networks. The term CI-Flooding

is used in [37], where a mathematical model of a CI based WSN is presented in order to

study the overall network performance including throughput and life time. A comprehen-

sive performance analysis of receiving concurrent transmissions from the physical layer

perspective is presented in [38], where it is shown that the IEEE 802.15.4 DSSS plays a vital

role in the successful reception of concurrent transmissions.
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Figure 2.1: Classification of related works on concurrent transmissions. In the bottom

works that studied concurrent transmissions either analytically or experimen-

tally. On the right are proposed protocols relying mainly on the capture effect.

On the left are proposed protocols relying on both the capture effect and CI.

Arrows connect protocols to others that build upon them.
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Related Works on Concurrent Transmissions

Several protocols have used concurrent transmissions to build communication primitives

based on Glossy. A comprehensive overview of the works discussed here is shown in Fig-

ure 2.1. Works are classified according to the proposed approach and analysis provided.

Classification is divided into (1) Works investigating concurrent transmissions, (2) Pro-

posed protocols relying on the capture effect and (3) Proposed protocols relying on both

the capture effect and CI.

To facilitate data exchange among multiple nodes, LWB [7] allocates non-overlapping

time slots to individual nodes for flooding single packets via Glossy. Similarly, Blink [27]

builds on LWB while following an earliest deadline first policy in order to achieve real

time latency constraints. Choco [39] builds on Glossy to construct a low-power, low-delay

and end-to-end reliable communication protocol. Whisper is presented in [42] to reduce

the radio-on time of nodes in multi-hop networks while reliably flooding small amounts of

data. It relies on concurrent transmissions to flood signaling packets through the network.

Similarly, LaneFlood [21] also relies on concurrent transmissions in order to establish a

route between any source and destination node in a multi-hop network in an effort to

empower one-to-one IoT communication protocols. Crystal [41] proposes the concurrent

transmission ofmultiple packets through simultaneous Glossy flowswhile performing data

prediction in order to minimize the number of re-transmissions within each glossy flow.

Senders compete while repeating transmission until they receive an ACK signal inform-

ing them that receivers have received the sent data correctly. Finally, Fleet [40] capitalizes

on Glossy while performing node clustering in order to limit the radio-on time of sensor

nodes. Hence, reducing energy consumption and latency. Chaos is proposed in [25], an

all-to-all data sharing and in-network processing primitive for low-power wireless net-

works. During transmission, Chaos exploits Glossy through the concurrently transmitting

packets with different payloads, where receiving nodes rely on the capture effect to receive

one of them. CH-Chaos [44] improves Chaos by implementing channel hopping in order

to add more robustness and resilience to interference at the receiver. For network control

operations, Sparkle is proposed in [43]. Sparkle builds on Chaos where it relies on con-

current transmissions in order to control and optimize end-to-end communication flow. In

summary, concurrent transmission dependent network flooding is an attractive approach

well deserving of large interest in recent years. However, there is still a huge room for

improvements in regards to energy efficiency and latency on the protocol operation level.
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Transmission Reception Software Delay Radio Off

Initiator

Hop 1 Nodes

Hop 2 Nodes

Hop 3 Nodes

Hop 4 Nodes

Time

End of FloodStart of Flood

Figure 2.2: Series of concurrent transmissions and receptions as a Glossy flood propa-

gates in a 4-hop network with re-transmission limit N = 1. Figure is adapted

from [6], where network flooding using Glossy is first introduced.

2.4 Operation of State-of-the-art Glossy

This section briefly reviews the operation of state-of-the-art Glossy. A Glossy flood typi-

cally starts with one node transmitting certain information at maximum transmit power (0

dBm). Then, all nodes, which receive successfully and have not reached the limit on num-

ber of re-transmissions (N ), transmit concurrently the received information with maxi-

mum transmit power. This continues until no more nodes are able to transmit due to the

re-transmission limit N . The result of this procedure are waves of the same information

propagating back and forth through the network until the Glossy flood is terminated. This

simple yet effective operation primitive is the reason why we try to further improve the

performance of state-of-the-art Glossy.

Figure 2.2 shows the actions during a Glossy flood in a multi-hop network. An initia-

tor starts the flood by transmitting the packet; all other nodes have their radio on. Since

wireless is a broadcast medium, all nodes within transmission range of the initiator, the
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1-hop receiver nodes, receive the packet at about the same time. After a minimal processing

delay, the 1-hop receivers relay the same packet at about the same time. Even though these

concurrent transmissions collide at the 2-hop receivers, these nodes can successfully receive

and decode the packet with high probability. Then, the 2-hop receivers again re-transmit

the same packet simultaneously, thereby propagating the flood deeper into the network.

As a result, the flood spreads like a wave and reaches out to all nodes. Since each node

transmits multiple times during the same flood up to a certain re-transmission limit N ,

there are multiple waves, boosting Glossy’s reliability above 99.9 % [6]. Unlike prior prac-

tical low-power wireless communication schemes, Glossy purposely forces packet collisions

rather than trying to avoid them (e.g., using carrier sensing or scheduling non-interfering

transmissions across individual links). To enable successful packet reception, Glossy aligns

identical wireless signals frommultiple concurrent senders within the 0.5μs bound that al-

lows them to interfere non-destructively using the IEEE 802.15.4 physical layer [6]. The

synchronization of the concurrent senders is established on the fly and in a distributed

fashion by using packet receptions during a flood as a reference point. For example, in Fig-

ure 2.2, the simultaneous reception of the packet from the 1-hop receivers serves to align

the transmissions of the 2-hop receivers. Glossy achieves this through a careful software

design that makes the processing time between reception and transmission as short and

deterministic as possible. Glossy also capitalizes on the capture effect that lets a receiver

demodulate only the strongest of multiple overlapping signals [34].

As a sort of by-product, Glossy can also time-synchronize all nodes in the network. To

this end, packets carry an extra field, the relay counter c. The initiator sets c = 0 before

starting the flood, and receivers increment c before relaying. Notably, the duration of a

single slot Tslot during a Glossy flood, that is, the time from the start of a transmission with

relay counter c to the start of the next transmission with c+1, is a network-wide constant

that can be locally measured by every node. By multiplying the received c by the mea-

sured Tslot , nodes obtain the elapsed time since the initiator started the flood. In this way,

nodes synchronize to the initiator with sub-microsecond accuracy [6]. We build on Glossy

because it approaches the lower latency bound for flooding single packets, achieves unpar-

alleled packet delivery ratios above 99.99 % in diverse real-world networks, and seamlessly

adapts to changes in the network (e.g., due to mobile or failing devices) [6, 7].
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MULTI-FLOW GLOSSY

In this chapter, we ask the question whether it is possible to overcome some limitations of

Glossy while retaining its merits, including its seamless support for communication to all

nodes in the presence of mobile devices. In particular, we explore the use of physical-layer

network coding (PLNC) to enable multiple sources to simultaneously flood different packets

to all nodes. This way, we aim at significantly increasing the goodput (i.e., the amount of

successfully exchanged data in the network per unit of time) over the state of the art for

the same transmit bit rate (e.g., 250 kbps for IEEE 802.15.4 radios).

3.1 Motivation and Contribution

Embedded wireless networks are a key factor to innovation in cyber-physical systems

(CPS). Using wireless radios instead of wires cuts costs and clears physical barriers, al-

lowing to tap into previously inaccessible information and to create applications with un-

precedented opportunities, from industrial wireless control [45] to emergency response via

aerial drones [46]. These emerging applications often rely on multi-hop communication

with stringent requirements on latency and reliability [45, 46]. For instance, coordina-

tion and control tasks require short end-to-end latency of 10–250ms [12] and tolerate only

small packet loss rates [47]. Further, industrial applications and drone swarms typically

need to exchange messages among a large number of static and/or mobile devices [45, 48],

which are often also subject to energy constraints [49].

Given the state of the art in low-power wireless networking presented in Section 2.1,

one possible solution to meet these requirements is to map the communication demands

onto a sequence of Glossy floods [6]. Similar to LWB [7], each node that wishes to transmit

is allocated a time slot in which it can flood one packet to all other nodes in the network

as demonstrated in Section 2.4. For flooding an individual packet using half-duplex radios,
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Glossy achieves almost the theoretical minimum communication latency, while providing

a reliability higher than 99.9 % in diverse scenarios regardless of whether the devices are

static or mobile[6, 7]. However, Glossy supports only one source node (or flow) per flood.

Therefore, the overall latency increases linearly with the number of packets if multiple

packets from different source nodes are exchanged using Glossy, as well as the network size.

In order to avoid interference between consecutive Glossy floods with different packets,

the next flood can only start after the previous one is over [7]. This operation bounds the

number of packets that can be exchanged within, for example, the cycle time of a control

or coordination task, which may limit the applicability of low-power wireless technology

to control systems with slow-changing dynamics and to swarms with not many more than

a handful of drones. Moreover, it performs sub-optimally from an energy point of view and

may not be suitable for monitoring applications, where multiple sensors need to transmit

their readings regularly while having as long battery life time as possible [12]. Hence, it

would be highly desirable to support not just one butmultiple flows fromdifferent initiators

during a flood.

3.1.1 Contributions and structure

To the best of our knowledge, we are the first to consider PLNC in a low-power wireless

setting. We realize that a lot of research needs to be done before MF-Glossy runs on

off-the-shelf devices just like Glossy. As such, our goal in this chapter is two-fold: We

intend to (i) shed light on the performance gains we can hope to achieve over Glossy by

using the compute-and-forward approach, which has thus far never been implemented on

IEEE 802.15.4 compliant hardware, and (ii) identify the key challenges that must by solved

to harness these performance gains in a MF-Glossy implementation on wireless devices.

To this end, this chapter contributes the following:

• We introduce MF-Glossy, a many-to-all communication scheme that builds upon

state-of-the-art Glossy and exploits PLNC based on the compute-and-forward ap-

proach [50] to simultaneously floodmultiple packets in a multi-hop low-power wire-

less network.

• By conducting a communication-theoretic analysis, we provide thus far unknown

upper bounds on the performance of the widely used state-of-the-art Glossy and our

proposed MF-Glossy scheme.
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• We show in simulation that MF-Glossy has the potential to outperformGlossy across

a wide spectrum of network configurations. Relative to Glossy, MF-Glossy can re-

duce latency by 9× and boost goodput by 3×, while consuming less energy and

providing the same high reliability.

• Based on the first implementation of the compute-and-forward approach on a small

testbed of SDRs presented in [51], we study the hardware implementation challenges

facing MF-Glossy. Using the findings in [51], we measure 2.4ms and 5.3ms for en-

coding and decoding one byte, respectively, on an Intel i5 processor. We discuss

several directions to significantly improve on these figures.

Overall, we show that MF-Glossy promises significant performance gains and is indeed

implementable. Our analytical performance upper bounds, while interesting in their own

right, determine the processing overhead an implementation of MF-Glossy can afford to

not outweigh the gains. Not withstanding its limitations, the proof-of-concept implemen-

tation shown in this chapter serves as a stepping stone to making MF-Glossy viable for

state-of-the-art wireless embedded platforms (e.g., leveraging 32-bit ARM Cortex-M mi-

crocontrollers).

After presenting the state of the art and explaining basic operation of PLNC in Sec-

tion 3.2, we propose in Section 3.3 a novel scheme, called Multi-flow Glossy (MF-Glos-

sy), that exploits PLNC to enable the simultaneous flooding of multiple different pack-

ets in multi-hop low-power wireless networks. Then, we conduct in Section 3.4 a

communication-theoretic analysis, at the most fundamental level, of the state-of-the-art

Glossy and the proposed scheme MF-Glossy. Our analysis provides thus far unknown

upper bounds on the performance of this widely-used, practical protocol. Then, results

fromnumerical simulations in Section 3.6 demonstrate thatMF-Glossy greatly outperforms

Glossy across a wide spectrum of network configurations. For instance, compared to Glos-

sy, MF-Glossy reduces latency by 9× and increases goodput by 3× while consuming less

energy and providing similar reliability. After that, we discuss hardware implementation

challenges and suggest possible solutions in Section 3.7 while demonstrating a proof-of-

concept implementation of PLNC based on the compute-and-forward approach. We end

the chapter in Section 3.8 with brief concluding remarks.



30 3 Multi-Flow Glossy

3.2 Physical-layer Network Coding (PLNC)

The concept of linear network coding (NC) is first proposed by Ahlswede et al. in [52]

for wired networks. In their seminal paper, they refer to NC as coding at a node in a

network, where, by coding, theymean an arbitrary, causal mapping from inputs to outputs.

The model used in NC is, however, assuming point-to-point error-free links. NC can also

be described as defined in [53]: “... if any receiver of a multi-cast session could, in the

absence of other receivers of the same session, receive at a certain rate, then it can do it

in the presence of any other number of receivers. NC removes the competition among

users for finite resources.” The basic idea is to allow intermediate nodes in a network

to combine the received data packets and forward a superposition. The intended receivers

will be able to decode the original data packets if they receive enough linearly independent

combinations of the original data packets. For wired networks, we can see a paradigm shift

from packet-switched networks, where each data packet is routed individually through the

network, to code-centric networks, where data packets are combined on their way through

the network. This helps resolve bottlenecks on frequently used routes. But network coding

is not limited towired networks. The concept is also applicable inwireless networks, where

interference is no longer considered a disadvantage but instead exploited.

3.2.1 State of the art

In 2006, physical-layer network coding (PLNC) is first introduced in [54] as a way to take

advantage of the natural coding that occurs when electromagnetic waves come together

within the same physical space. After that, the first PLNC implementation on software-

defined radios (SDRs) is demonstrated by Katti et al. [55] in 2007, where they adopt an

amplify-and-forward approach, such that a relay does not decode the received superposi-

tion but simply amplifies and forwards the signal. This approach is often referred to as

analog network coding. Amplify-and-forward does not decode the signals, but forwards

an amplified version of the received signal. The downside is the noise amplification, which

accumulates as the signal is forwarded through the network, making it effective only in

high signal to noise ratio channels [56]. Moreover, time synchronization poses a practical

problem that many try to battle [57]. A first design and implementation of a PLNC proto-

col is proposed in [58] using Viterbi decoder to treat timing and sampling offsets between

interfering signals. For the two-way relay channel, [59] conducts an analysis of the per-

formance of practical PLNC. The authors of [60, 61] go even further and show a real-time

implementation of PLNC.
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A peak for PLNC research is in 2011, when Nazer and Gastpar show that a compute-

and-forward approach, where relays de- and encode linear combinations of packets, can

achieve higher goodput than amplify-and-foward [50]. Using nested lattice codes, it can

achieve the additive white Gaussian noise (AWGN) channel capacity with lattice decod-

ing instead of maximum-likelihood decoding [62]. There have been a few efforts to use

compute-and-forward applicable in practical systems [63]. In [64, 65] the performance

of the compute-and-forward approach is analyzed using low density lattice codes [66].

However, the analysis is limited to scenarios with perfect channel alignment. To make

compute-and-forward practical, an efficient implementation of the corresponding coding

schemes is essential. Although in a different context, Sheppard et al. [67] designed and

implemented lattice coding schemes using digital signal processing techniques, and Wang

et al. [68] integrate the leech lattice into IEEE 802.11a. Recent studies explore lattice codes

for future 5G networks [69]. So, thus far, compute-and-forward based on lattice codes has

been a theoretical topic that lacked a practical implementation, whereas we demonstrate

the first hardware setup on a small SDR testbed.

We investigate the use of the compute-and-forward approach by Nazer and Gastpar [50]

to enable the simultaneous flooding of multiple packets in a multi-hop embedded wireless

network. We refer to this many-to-all communication scheme as Multi-flow Glossy (MF-

Glossy). Using MF-Glossy, a given number of sources K initiate the flood by simultane-

ously transmittingK different source packets. At the end of a MF-Glossy flood, every node

in the network is aware of allK source packets.

Like Glossy, PLNC is based on concurrent transmissions. Unlike Glossy, however, the

transmitted packets have different payloads. As an example, consider the classical two-hop

relay network in Figure 3.1, where nodesN1 andN2 want to exchange a message with one

another through relayN3. Using Glossy, nodeN1 “floods” its packet viaN3 toN2, and then

node N2 “floods” its packet via N3 to N1. So exchanging two packets takes 4 time slots.

PLNC achieves the same in 2 time slots. In particular, nodes N1 and N2 transmit their

packets simultaneously in the first time slot. Due to the coding that naturally occurs when

electromagnetic waves come together within the same physical space, relay N3 receives

and decodes the sum (i.e., a linear combination) of both packets, which it then encodes and

transmits in the second time slot. Because N1 and N2 know the packets they transmitted,

they can subtract them from the received sum to get the other packet. Thus, using PLNC,

we double the goodput in this example compared with Glossy. In order to further explain

the proposed MF-Glossy in Section 3.3, we present some background definitions for PLNC

in Section 3.2.2.
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Figure 3.1: Comparison between Glossy and MF-Glossy in two-hop relay WSN, where

nodes N1 and N2 intend to exchange messages with each other via relay N3.

Using physical-layer network coding, N1 and N2 send simultaneously. N3 re-

ceives and decodes the sum of both packets, which it encodes and transmits.

N1 and N2 substract their own packet to get the other packet. This doubles the

goodput compared with the current approach used by Glossy.

3.2.2 Introduction to PLNC

In a wireless setup, it is possible to exploit the superposition property of the wireless chan-

nel. The transmitted signals are combined in the air and the receiver gets a superposi-

tion plus noise. Since the network coding occurs on the physical layer, we call this kind

of network coding PLNC. If the receiver is an intermediate node that will relay a linear

combination of the received signals, we call this node a relay. A relay can choose among

different relaying strategies, including

• decode-and-forward, where the relay decodes the individual data and forwards a new

linear combination;
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• amplify-and-forward, where the relay amplifies the received superposition and for-

wards the signal;

• compute-and-forward, where the relay directly decodes a linear combination of the

original data.

Using decode-and-forward strategy, a relay decodes just one signal and treats all others

as noise. Treating interference as noise reduces the achievable rate.

Compute-and-forward combines the advantages of both: The relay decodes a linear com-

bination of the signal (interference is exploited and not treated as noise) and the noise is

removed from the signal (no noise amplification and accumulation). This strategy was first

introduced by Nazer et al. in [50].

Channel codes such as Reed-Solomon provide forward error correction (FEC) for com-

munication over noisy channels. A code is a finite set of codewords of length n. The

data to be sent is divided into messages from an index set {1, . . . , 2nR}, where R = q
n

is the code rate, and q is the code dimension (i.e., the message length). After encoding,

the codewords get mapped to complex-valued samples using a modulation scheme. How-

ever, conventional modulation schemes, such as quadrature amplitude modulation (QAM),

are not suitable for compute-and-forward, because the superposition of two modulation

points is not necessarily a valid modulation point. For this reason, compute-and-forward

uses nested lattice codes, which offer the required properties.

In the following, we define a few necessary terms related to nested lattice codes and the

compute-and-forward framework. For a more detailed introduction, we refer the reader

to [70]. Afterwards, we use an example to illustrate the communication using compute-

and-forward based on lattice codes. Lets assume there are K source nodes and M relay

nodes.

3.1 Definition (Lattice). A lattice Λ is a subgroup ofCn which is isomorphic to Zn+j Zn.

If s, t ∈ Λ, then s+ t ∈ Λ. �

3.2 Definition (Nearest Neighbor Quantizer). The nearest neighbor quantizer Q is de-

fined as

Q(x) � argmin
λ∈Λ

‖x− λ‖ . (3.1)
�

3.3 Definition (Voronoi Region). The fundamental Voronoi region V of a lattice Λ is the

set of all points in C
n closest to the zero point, that is, V = {x : Q(x) = 0}. �
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3.4 Definition (Quantization Error). The quantization error can be expressed by the

modulo-Λ operation with respect to the lattice, which is defined asx mod Λ = x−Q(x).�

3.5 Definition (Nested Lattice Code). A nested lattice code NL is the set of all points of

a fine lattice ΛF that are within the fundamental Voronoi region VC of a coarse lattice

ΛC ⊂ ΛF ,

NL = ΛF ∩ VC = {λ mod ΛC , λ ∈ ΛF} . (3.2)
�

3.6 Definition (Lattice Encoder). The encoder E used at source node k maps data mes-

sages dk ∈ Fq to lattice codewords xk ∈ NL ⊂ C
n such that,

E : Fq �→ ΛF ∩ VC . (3.3)
�

3.7 Definition (Lattice Equation). A lattice equation vm at relay m is an integral combi-

nation of lattice codewords xk modulo the coarse lattice

vm =

[
K∑
k=1

amkxk

]
mod ΛC (3.4)

with amk ∈ Z+ j Z. We call am = (am1, . . . , amK)
T the lattice coefficient vector. �

Figure 3.2 illustrates encoding, transmission, and decoding of two messages over an

AWGN channel using the compute-and-forward approach. Each transmitter encodes its

messages by a nested lattice code encoder E ; that is, it maps a message dk ∈ Fq to a lattice

codeword xk ∈ NL ⊂ C
n such that E(dk) = xk. This encoding process is equivalent

to modulation schemes in classical communication systems. Whereas a classical modula-

tion scheme maps messages to one-dimensional complex-valued samples, a lattice encoder

maps messages to n-dimensional complex-valued samples, which are transmitted sequen-

tially.

Receiver m in Figure 3.2 now aims to decode a lattice equation specified by the lattice

coefficient vector am as in (3.4). Unfortunately, it receives a noisy superposition of the

transmitted codewords

ym =
K∑
k=1

hmkxk + zm, (3.5)
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Figure 3.2: Illustration of a compute-and-forward transmission over an additive white

Gaussian noise (AWGN) channel using nested lattice codes. Figure is adapted

from [71] and [51].
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where each transmitted codeword xk is multiplied by a channel coefficient hmk and

summed up. Additionally, a noise vector zm with zm ∼ CN (0, σ2In) gets added to the

received signal. The channel coefficients are complex values that do not necessarily belong

to the set of Gaussian integers, whereas each relay wants to decode a linear combination

with coefficients from the set of Gaussian integers. Thus, a receiver must scale the channel

output with a factor αm, such that sm = αmym. The goal of this operation is to scale the

received signal such that the channel values become Gaussian integer values. However,

there is a trade-off because scaling the received signal also scales the noise. The optimal

scaling factor for a desired lattice equation with coefficients am is the minimum mean

square error (MMSE) coefficient

αMMSE
m =

PhH
mam

σ2 + P ‖hm‖2
, (3.6)

where hm is the channel coefficient vector from all sources to relay m. After the scaling

operation, the receiver is able to detect a linear combination of the transmitted codewords

plus some noise. To get an estimate of the lattice equation vm, vector sm is quantized onto

the fine lattice ΛF modulo the coarse lattice ΛC

v̂m = [Q(sm)] mod ΛC . (3.7)

If the noise zm is small enough such that zm ∈ VF , the quantization step removes the

noise and the linear combination can be reliably decoded. Since each decoder tries to de-

code a superposition of codewords, we call the rate at which decoding is done reliably

computation rate. The achievable computation rate of the compute-and-forward frame-

work is given by

R(hm,am) = log+2

((
‖am‖2 − P |hH

mam|2
σ2 + P ||hm||2

)−1
)

(3.8)

with log+2 (x) � max{0, log2(x)}. This means all relays can simultaneously decode equa-

tions with coefficients am as long as the message rates are within the computation rate

region

Rk < min
amk

R(hm,am). (3.9)
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3.3 Multi-flow Glossy (MF-Glossy)

We now present MF-Glossy, a many-to-all communication scheme that exploits PLNC

based on compute-and-forward to simultaneously flood 2 ≤ K ≤ V − 1 different pack-

ets (or flows) from K different sources to all V nodes in a multi-hop wireless network.

The source nodes initiate the flood by concurrently transmitting their packets at the same

source rate R. Afterward, each node follows the operating steps shown in Algorithm 1

until it reaches the re-transmission limitN . In essence, MF-Glossy inserts steps 2–6 of Al-

gorithm 1 between the Rx and Tx phases of state-of-the-art Glossy as shown in Figure 2.2.

Figure 3.3 shows an example with K = 2 packets injected by source nodes N1 and N2;

the re-transmission limit is N = 2. For simplicity, we focus on nodes N1–N4, which may

in fact be part of a larger wireless multi-hop network.

In the first time slot (see Figure 3.3a), nodes N1 and N2 simultaneously transmit two

different packets A and B, which are encoded using lattice codes. Due to the broadcast

nature of the wireless channel, nodesN3 andN4 receive a superposition of the transmitted

signals and each decode a linear combination of the source packets (a1A+ a2B and a3A+

a4B, respectively) as explained in steps 3 and 4 of Algorithm 1.

In the second time slot (see Figure 3.3b),N3 andN4 transmit an encoded linear combina-

tion as explained in steps 6 and 7 of Algorithm 1, which are received and decoded by nodes

N1 and N2. According to step 5 in Algorithm 1, because nodes N1 and N2 have acquired

K = 2 independent linear combinations, they can already retrieve the two source packets

A and B.

In the third time slot (see Figure 3.3c), N1 and N2 transmit again linear combinations

a5A + a6B and a7A + a8B of packets A and B, since they have not yet reached the re-

transmission limitN = 2. NodesN3 andN4 receive and decode linear combinations of the

transmitted linear combinations. Assuming that the newly received linear combinations

are independent of the previously received linear combinations, they can now retrieve

packets A and B.
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Algorithm 1 Key operating steps of a node in MF-Glossy

1: while re-transmission counter ≤ re-transmission limit N do

2: Wait for incoming signal. Listen to the channel waiting for a transmitted signal to be

detected.

3: Receive signal. When a signal is detected, receive it and verify successful reception by

checking that there exists a coefficient vector a for which the achievable rate R(h̃,a) is

greater than or equal to the source rate R,R(h̃,a) ≥ R, whereR(h̃,a) is given by (3.8). If

the rate condition is not satisfied, reception is unsuccessful and the node goes back to 2.

4: Decode signal. After successful signal reception, decode and store any linear combination

of source packets with associated coefficient vector a for which R∗(h̃,a) ≥ R. The decod-

ing maps each coefficient vector to the corresponding lattice point.

5: Rank check. Check if the rank of the coding coefficient matrix is at least K . If so, retrieve

theK source packets.

6: Encode signal. Choose and encode one linear combination to be transmitted provided it is

linearly independent on previously transmitted linear combinations. The encoding process

maps each linear combination to the closest lattice point.

7: Transmit signal. Transmit the corresponding signal and increment the re-transmission

counter.

8: end while
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(a) Time slot 1: NodesN1 andN2 initiate the flood by simultaneously transmitting different source

packetsA andB. N3 andN4 receive and decode linear combinations a1A+a2B and a3A+a4B,

respectively.

N1A,B N2 B,A
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a1A+ a2B
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a3A+ a4B

a1A+ a2B

a3A+ a4B
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(b) Time slot 2: Nodes N3 and N4 encode and transmit their respective linear combinations. N1

andN2 receive and decode linear combinations, allowing them to retrieve the source packets A

and B.
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a5A+ a6B
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a7A+ a8B
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(c) Time slot 3: Nodes N1 and N2 transmit again a linear combination of packets A and B, i.e.,

a5A+a6B and a7A+a8B, respectively. N3 andN4 receive and decode new linear combinations.

Assuming these are linearly independent on their previously received linear combinations, they

can now also retrieve the source packets A and B.

Figure 3.3: Example illustrating the operation of MF-Glossy with K = 2 source packets

injected by nodes N1 and N2; the re-transmission limit is N = 2. This illustra-

tion shows only the communication among nodes N1–N4 in a 2-hop network,

which may in fact be part of a much larger multi-hop wireless network.
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Figure 3.4: The two basic cases in our communication-theoretic analysis.

3.4 Communication-theoretic Analysis

In this section, we derive bounds on the outage probability (i.e., packet loss rate) of Glossy

and MF-Glossy These bounds provide valuable insights on the theoretically possible good-

put of Glossy and MF-Glossy, and thus allow us to quantitatively compare both schemes

independent of the implementation.

3.4.1 Glossy

To derive the outage probability of Glossy, we decompose a full flood. At the start of a

flood, there is one node sending to one or several nodes (see Figure 2.2), which can be

modeled as point-to-point channels as depicted in Figure 3.4a. During the flood, instead,

multiple nodes broadcast their data to their neighbors: one node receives from several

transmitting nodes (see Figure 2.2). This can be modeled as multiple-access channels as

depicted in Figure 3.4b.

Point-to-point channel (P2P)

We start with the point-to-point channel shown in Figure 3.4a. Node S transmits a signal

x at rate R and node D receives the signal y = xh + z, where z is AWGN with z ∼
CN (0, σ2In) and h ∈ C is the channel gain. The channels for low-power wireless devices

are typically slow-fading channels (i.e., they can be considered constant over the block

length). The maximum achievable rate over this channel is upper bounded by its capacity,

which is given by [72, Chapter 2]

CP2P = log2

(
1 +

|h|2P
σ2

)
, (3.10)

where P = E[x2] is the average transmit power of node S. If S sends at a rate higher than

the channel capacity, the reception is not error-free and outage occurs. Hence, the outage
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probability (i.e., packet loss rate) is given by Pr(CP2P < R) [73].

Multiple-access channel (MA)

We turn to the multiple-access case shown in Figure 3.4b. Each node Sk with k ∈
{1, 2, . . . , K} simultaneously transmits a signal xk at rate R to node D.

y =
K∑
k=1

xkhk + z , (3.11)

where hm ∈ C is the channel gain between Sk and D. In Glossy, all nodes send the same

signal, so x1 = · · · = xK .

If the transmitters have no channel state information, the maximum achievable rate

RMA is the maximum rate at which node D can successfully receive all data transmitted

by nodes S1, S2, . . . , SK . This rate is given by [74]

RMA = log

(
1 +

|∑M
k=1 hk

√
Pk|2

σ2

)
, (3.12)

where Pk = E[|xk|2] is the average transmit power of node Sk. The corresponding outage

probability is Pr(RMA < R).

3.4.2 MF-Glossy

In MF-Glossy, the point-to-point channel model is valid as derived above. However, the

multiple-access channel model changes, because node D decodes a superposition of the

signals instead of the individual signals. We assume that there areK flows during a flood,

that is,K nodes initiated a flood, whereas each node k with k ∈ {1, 2, . . . , K} sent a data
packet dk. Using the notation in Figure 3.5, we assume that each relay nodeRLm transmits

a linear combination xm =
∑K

k=1 amkdk of the data packets dk. Receiver node D receives

the signal

y =
M∑

m=1

hmxm + z =
M∑

m=1

hm

(
K∑
k=1

amkdk

)
+ z (3.13a)

=
M∑

m=1

K∑
k=1

hmamkdk + z =
K∑
k=1

dk

M∑
m=1

hmamk + z (3.13b)

=
K∑
k=1

h̃kdk + z , (3.13c)
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Figure 3.5: System model of general relay networks with K source nodes, M relay nodes

and 1 destination node. MatrixH represents the channel gains from the source

nodes to the relay nodes and has the size K × M . Vector h̃ = [h̃1, . . . , h̃K ]

represent the effective channel gain from the source nodes to the destination

node passing through the relay nodes.

where h̃k =
∑M

m=1 hmamk is the effective channel from source node k to destination node

D passing through allM relay nodes. The maximum achievable rate for decoding a linear

combination aD (compute-and-forward coefficient vector at node D) of the data packets

dk follows from (3.8) and is given by R(h̃,aD). The outage probability (i.e., packet loss

rate) is Pr(R(h̃,aD) < R).

All coefficient vectors aD for which R(h̃,aD) is greater than or equal to the transmit

rate R are used for decoding and stored. If a node cannot find a coefficient vector that sat-

isfies the rate condition, the reception is considered unsuccessful and the node goes back

to the listening state. In order to maximize the benefits of each transmission, each node

only transmits a linear combination with a coefficient vector if this vector is linearly inde-

pendent of previously transmitted vectors. As soon as K linearly independent coefficient

vectors are acquired by a node, the source packets are decoded at this specific node. The

resulting outage probability at node D for the entire flood is the probability that node D

acquires less than K linearly independent combinations of the original data packets dk,

which is unlikely to happen due to the random nature of Gaussian channels.
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3.5 Evaluation Settings and Metrics

We present in this section the settings used in the system level simulations including

network topology, transmission parameters, channel model and compared simulation

scenarios. Moreover, we define performance metrics that we use later in comparing

Glossy and MF-Glossy in Section 3.6.

Network topology

We generate network topologies using a binomial point process with λ nodes randomly

and independently placed in a square of side length L. We vary λ and L to study their

impact on performance; our results are averaged over 10,000 independent realizations for

the same λ and L.

Transmission parameters

Irrespective of the network topology, all nodes transmit with rate R = 250 kbps and

a power of 0 dBm, which correspond to the maximum settings as prescribed by the

IEEE 802.15.4 standard.

Channel model

We model the channel gains hi as stationary independent according to hi = wi gi, such

that small-scale fading wi follows a complex normal distribution CN (0, 1), and large-scale

fading gi depends on the distance d between transmitter and receiver [5, E 5.3] as follows:

gi =

{
40.2 + 20 log(d) , d ≤ 8m ,

58.5 + 33 log(d/8) , d > 8m .
(3.14)

This corresponds to a path loss exponent of 2 for the first 8m and a path loss exponent

of 3.3 for distances larger than 8m. To ensure gi > 0 according to (3.14), we consider

only topologies where the distance between any pair of nodes exceeds 0.1m, which is

reasonable in real deployments [75].
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Compared schemes

We compare our proposed MF-Glossy against state-of-the-art Glossy. To do so in a fair

manner for K ≥ 2 flows, using Glossy, we consider K successive floods initiated by K

different randomly selected nodes; our results for Glossy refer to theseK successive floods

as a whole. We set the re-transmission limit of Glossy to N = 3 based on experience from

extensive real-world experiments [6, 7], and use N = 6 for MF-Glossy. We study the

impact of N on the performance of both schemes in dedicated simulation runs.

Performance metrics

We consider the following performance metrics of real-world applications[17]:

• Packet reception ratio (PRR): The number of nodes that correctly receive (or decode,

in case of MF-Glossy) all packets divided by the total number of nodes in the network

λ.

• Latency: The time from the start of the flood until a node correctly receives (decodes)

all packets, averaged over all nodes in the network. Given a certain packet size, the

duration of a single slot during a Glossy flood is a network-wide constant [6]. We

compute latency of Glossy and MF-Glossy for 8-byte packets, purposely ignoring

the overhead of the de- and encoding in MF-Glossy to get an upper bound on the

theoretically possible performance gains. As result, varying the packet size has no

impact on the relative performance between MF-Glossy and Glossy in our simula-

tions. We evaluate and discuss MF-Glossy’s overhead in Section 3.7 using dedicated

experiments.

• Global energy consumption: The total energy consumed by all λ nodes for communi-

cation between the start and the end of a MF-Glossy flood or K consecutive Glossy

floods. To compute energy consumption, we take the current draws from the data

sheet of the widely used CC2420 radio chip in states transmit, receive, listening, and

idle, assuming batteries constantly supply 2000mAh at 3 V. We consider a node to

be idle only when its radio is turned off after reaching its re-transmission limit N .

• Goodput: The average amount of data a node receives (or decodes) successfully per

time unit. Formally, we calculate goodput as follows:

Goodput =
PRR × 64×K

Latency
, (3.15)
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where 64 is the number of bits in a single packet. In other words, goodput is a

measure of the level of “service” provided, while energy measures the associated

“cost.”
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Figure 3.6: Impact of the number of flows and network side length in a 50-node network

on the goodput of MF-Glossy and Glossy.

3.6 Results and Discussion

We use the models from Section 3.4 to evaluate and compare the performance of MF-Glos-

sy and Glossy in simplified system level simulations according to the settings and metrics

defined in Section 3.5.

3.6.1 Goodput

Figure 3.6 shows goodput of MF-Glossy and Glossy against network side length for 50

nodes and different number of flows. We see that by serving multiple flows within the

same floodMF-Glossy achieves several-fold improvements over Glossy across a wide range

of network side lengths (i.e., node densities). Using more flows K benefits MF-Glossy up

to a network wide length of about 60m, while Glossy generally suffers as K increases.

We also see that the decrease in goodput for MF-Glossy becomes steeper for larger K till

we reach crossing points that tell us exactly which value of K to use for a given network

size. Figure 3.7 shows goodput against network side length for K = 3 flows and different

number of nodes. Again, we see that MF-Glossy is particularly good at leveraging a higher
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Figure 3.7: Impact of the number of nodes and network side length for 3 flows on the good-

put of MF-Glossy and Glossy.

node density to boost goodput, which confirms the trend we observed before in Figure 3.6.

3.6.2 Latency and PRR

To understand the goodput results, we look at latency and PRR as a function of network

side length for 50 nodes and different number of flows. Looking at Figure 3.8, we see that

the latency of Glossy increases linearly and significantly with the number of flows, because

each flow is mapped onto a single independent flood. MF-Glossy, instead, accommodates

multiple flows in the same flood, which comes only at a slight increase in latency per flow.

As a result, for 5 flows, MF-Glossy reduces latency by about 9× compared with Glossy.

Note that the comparison in Figure 3.8 is fair only when considering the same number of

flowsK .

Looking at Figure 3.9, we observe a faster decay in PRR as the number of flows in-

creases. This is expected because, intuitively, delivering, say, 5 packets successfully is

more difficult than delivering only 4 packets successfully. Nevertheless, by increasing the

re-transmission limit N , it is possible to boost the PRR of MF-Glossy at the expense of a

higher latency.
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Figure 3.8: Latency of MF-Glossy and Glossy against network side length for 50 nodes and

different number of flows.

3.6.3 Goodput vs. energy

Having examined the factors impacting the level of “service” provided by MF-Glossy and

Glossy, we now relate this to the associated “costs.” To this end, we plot in Figure 3.10

goodput against global energy consumption for different number of flows K and re-

transmission limits N , considering a 50-node network that is 60m × 60m in size.

We see that MF-Glossy provides a significantly better trade-off than Glossy: MF-Glossy

always provides higher goodput or reduced energy consumption without impairing the

other metric in comparison to Glossy. Moreover, we find that for a given number of flows

K there exists a distinct setting for the re-transmission limit N that maximizes goodput.

Increasing N beyond this point helps PRR, yet this improvement cannot counter the ef-

fect of increased latency, thus ultimately resulting in lower goodput and higher energy

consumption.

We also see that using more flows K increases the goodput of MF-Glossy, but the rela-

tive improvements become smaller and smaller for higherK . Based on the network char-

acteristics and application requirements at hand, users can decide on the best parameter

setting (e.g., N and K), thereby trading higher (lower) goodput for higher (lower) energy

consumption.

We see that there exists an optimum setting for N that maximizes goodput while mini-

mizing energy consumption, which we call Pareto-optimal. This Pareto-optimal point dif-
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Figure 3.9: PRR of MF-Glossy and Glossy against network side length for 50 nodes and

different number of flows.

fers between different values of K as well as network scenarios. For the scenario consid-

ered in our discussion in Figure 3.10 we can calculate that for K = 2, 3 and 4, the Pareto-

optimum values forN are 3, 4 and 5 respectively. IncreasingN beyond the Pareto-optimal

point will result in higher PRR but not high enough to counter the effect of increased la-

tency, therefor resulting in a slight degrade of performance while consuming even more

energy. By using the same approach, we are able to optimize settings for MF-Glossy in any

network scenario to maximize goodput and minimize energy consumption. We also note

that by using MF-Glossy we are not only achieving higher goodput than Glossy, but we

are doing it with lower energy consumption.
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Figure 3.11: Hardware setup used in the first implementation of compute-and-forward us-

ing nested lattice codes as presented in [51].

3.7 Challenges of Hardware Implementation

MF-Glossy uses the compute-and-forward framework based on nested lattice codes. We

report here on the first implementations of this framework on real hardware, thus demon-

strating that the key concept underlying MF-Glossy is indeed implementable. We also

highlight the main challenges in the way of using MF-Glossy on embedded, resource-

constrained devices and suggest possible solutions.

PLNC Implementation based on [51]

Three USRP N210 SDRs are used in [51], such that two act as transmitters and one act as a

receiver, as shown in Figure 3.11. This setup corresponds to what happens during the first

time slot of a MF-Glossy flood with K = 2 sources. The SDRs are time-synchronized by

a 10MHz signal as well as a pulse per second (PPS) signal. A host PC, which features an

Intel i5 processor, interacts with the three SDRs via a switch over Ethernet and manages

all computations.

GNU radio [76] is used to implement the interaction between the host PC and the three

SDRs, and SageMath [77] to implement the encoding and decoding on the host. In addition

to the lattice code, Reed-Solomon code is used for forward error correction. GNU radio as

well as SageMath are general open-source frameworks, and hence do not provide opti-

mized algorithms for our peculiar lattice encoding and decoding operations. Nevertheless,

this implementation provides a benchmark that allows the evaluation of the compute-and-

forward framework performance in a practical setting.
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To this end, the two transmitters are allowed to simultaneously send two different 19 kB

files. After encoding both files on the host, this triggers 80 simultaneous transmissions of

235-byte data frames by the two transmitters. The receiver forwards received signals to

the host, that performs the decoding.

Results of the expirments performed in [51] reported the following results:

• All data frames were correctly decoded.

• 2.4ms and 5.3ms were measured for encoding and decoding one byte, respectively.

Challenges and solutions

After including the processing overheads presented in the aforementioned implementation

in our simulations, we get, for example, a latency of 241ms for 5 flows with MF-Glossy in

a 50-node network with a side length of 45m (see Figure 3.8). Therefore, about 10× faster

encoding and decoding are required for MF-Glossy to be faster than Glossy, which has a la-

tency of 28ms for this network configuration. Therefore, it is clear that the biggest obstacle

in the way of an efficient implementation of MF-Glossy is that encoding and decoding take

a significant amount of time. Nevertheless, a very large part is spent in methods that just

provide data models for finite fields, vector and matrix arithmetic, etc. Significant speed-

ups are possible by using optimized libraries for these operations (e.g., [78]). Further, it

is possible to optimize the algorithms for the modulo operation of a certain lattice. Since

the modulo operation is costly and frequently used, optimizing it will bring a significant

performance boost. In standardized protocols, there is typically a finite set of modulation

and coding schemes from which the nodes choose depending on certain system parame-

ters. The same holds for lattice codes. One can design a set of good lattices with optimized

algorithms from which the nodes choose one. A practical implementation of a lattice en-

coder and decoder is presented in [79] on SDR hardware, where the implementation takes

into account the channel misalignment between distributed nodes resulting from hardware

impairments. The algorithm requires very low-overhead feedback to align the channels of

superposing signals. A lattice shaping method is also proposed in order to reduce compu-

tations in decoding operations based on low-density lattice codes (LDLC)[66] and lattice

code word power control. Moreover, efficient algorithms exist to compute the coding coef-

ficients [80] and to map the receive vector to a valid lattice point [81], which we exploited

only partially. Thus, we believe an implementation on embedded devices is indeed pos-

sible, especially in light of the trend towards more powerful, yet highly energy-efficient

32-bit micro-controllers with rich instructions sets (e.g., ARM Cortex-M series).
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A second challenge is time and frequency synchronization of the distributed nodes. The

compute-and-forward framework requires and assumes perfect synchronization, yet we

only discuss its feasibility in practice based on SDR implementations. Therefore, an impor-

tant question must be answered; How large can the delays and offsets among nodes (with-

out dedicated synchronization hardware) can be without greatly affecting performance?

On the other hand, Glossy is able to provide sub-micro second time synchronization be-

tween nodes. However, this is a result of the deterministic and identical processing delay

at all nodes, which will change when lattice encoding and decoding operations are in-

troduced at the nodes. Therefore, the processing delay must be kept deterministic and

constant across all nodes to keep the inherit time synchronization of original Glossy.
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3.8 Conclusions

In this chapter, we have explored the opportunities and challenges of using PLNC to enable

the simultaneous flooding of different packets from different sources to all nodes in the net-

work. We thus introduced MF-Glossy and performed a communication-theoretic analysis

of Glossy and MF-Glossy to determine upper bounds on their performance. Simulation

results showed that MF-Glossy has the potential to achieve several-fold improvements in

goodput and latency at lower energy costs and comparable packet reception rates. Based

on several actual implementations of PLNC using lattice codes on SDRs, we demonstrated

that our protocol design is indeed implementable. Our work thus represents the first step

towards utilizing PLNC in embedded wireless networks, and shows its potential—a poten-

tial that, if harvested efficiently, can result in huge performance gains and resource savings.
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CHAPTER

4
BEAMFORMING WITH PERFECT CSI

In this chapter, we consider a device-to-device wireless multi-hop communication scenario

with resource-constrained devices that require energy-efficient connectivity. Based on the

recently proposed Glossy network flooding protocol presented in Section 2.4, we develop

power control algorithms that utilize multi-cast beamforming in order to cooperatively

flood the same information to all nodes in the network. Hence, improving energy efficiency

while conserving the many other merits of Glossy.

4.1 Motivation and Contribution

The energy efficiency of a sensor node is strongly affected by the energy consumption

in the radio transceiver. Glossy takes advantage of the embedded sub-micro-second time

synchronization between nodes in order to achieve very small radio active times (Radio On

time) and save energy. However, it employs no power control, no cooperation and more

importantly, no spatial processing schemes such as distributed beamforming. Therefore,

the total energy consumption of the network increases linearly with increasing number

of nodes in a network and results in excess energy consumption and degraded energy

efficiency. This is sub-optimal for the long-term operation of sensor networks (e.g., in

monitoring applications [16]) that need energy conservation to assist in elongating their

battery life. To this end, we explore possible advantages of using power control schemes to

more efficiently manage network resources and achieve higher energy efficiency in state-

of-the-art Glossy.

4.1.1 Contributions and structure

In [43], Sparkle is proposed, a novel WSN protocol for control operations. In Sparkle, trans-

mission power control is applied to Glossy to optimize end-to-end flows by performing
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control on the flow. It uses topology control methods to map the best route from the

source to the destination node. Then, it chooses transmission powers empirically at each

intermediate node in order to save energy and satisfy application specific reliability and

latency constraints. Experiments performed on two different test-beds show the following

results:

• On one hand, using a single path from the source node to the destination node

severely damages reliability, which shows the advantage of using concurrent trans-

missions in improving reliability of communication.

• On the other hand, having all nodes participate with maximum transmit power in

the flood may also decrease reliability.

• Latency decreases when the number of participating nodes in the flood is moderately

limited compared to all nodes transmitting at maximum or minimum power.

• Energy consumption is decreased significantly when the number of participating

nodes in the flood is moderately limited compared to all nodes transmitting at max-

imum or minimum power.

All in all, Sparkle presents the first effort to use power control with Glossy in order to

achieve better energy efficiency. However, the results presented are purely empirical and

solely based on experimental trials. Values for transmission powers used are set arbitrary in

differentmodes and iterated until a propermode is found. This calls for amore theoretically

formulated approach to the use of power control with state-of-the-art Glossy. To this end,

this chapter contributes the following:

• We introduce an elaborate theoretic system model formalizing the communication

phases in Glossy including the multi-cast and general multi-cast channels.

• Assuming a centralized decision approach and availability of perfect CSI, we for-

mulate the problem of centralized power control and beamforming in Glossy as a

convex optimization problem and provide a solution to the relaxed approximation of

the problem.

• Assuming a distributed decision approach and availability of perfect local CSI, we

formulate the problem of distributed power control and beamforming in Glossy as a

list of independent individual problems and provide a solution to each one of them.
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• We compare the proposed approaches in terms of their energy efficiency to the stan-

dard Glossy through numerical simulations across a wide spectrum of network con-

figurations at comparable packet reception rates.

Our numerical simulations show that a centralized power control scheme can achieve

several-fold improvements in energy efficiency over Glossy. They also demonstrate that

distributed power control promises significant gain in energy efficiency compared to stan-

dard Glossy in specific operation scenarios. Results tell us that careful network planning

is required when choosing between no power control (as in Glossy) and distributed power

control, which agrees with the findings presented in [43].

After presenting related works on power control and transmit beamforming methods

in Section 4.2, we present in Section 4.3 a communication-theoretic system model, of the

communication phases of state-of-the-art Glossy. Then, in Section 4.4, we explore and

compare different power control and beamforming schemes with respect to their energy

efficiency. First, we consider a centralized approach in Section 4.4.1, where a single arbi-

trator has full network topology and network-wide channel state information, and is thus

able to make global resource allocating decisions, which we consider to be the upper bound

on the achievable performance. Then, we propose a distributed power control and beam-

forming scheme in Section 4.4.2, comparing it against both the centralized approach and

standard Glossy in Section 4.6. Finally, we present some concluding remarks in Section 4.7.

4.2 Power Control and Beamforming

The problem of optimizing transmission power in wireless communications has received

a lot of attention due to its potential in allocating resources more efficiently [82]. A set

of nodes that simultaneously transmit the same information can be regarded as a virtual

antenna array [83]. Hence, accurately choosing the transmit power of each node can be

seen as focusing available transmit energy in specific directions or a form of beamforming.

Moreover, this introduces spatial diversity, which can improve performance and increase

received signal strength at receiving nodes [28]. The performance of different power con-

trol algorithms is studied in [84], where bounds and stability conditions for the studied

algorithms are presented. Transmit power optimization for the MISO multi-cast channel is

studied in [85], and the joint transmit beamforming for the dissemination of common in-

formation is studied in [86], where a problem formulation is proposed tominimize transmit

power under multiple-rate constraints. This problem is shown to be NP-hard. However,

an approximate solution can be devised using relaxation methods [87]. An overview of
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convex optimization techniques applied to beamforming is presented in [88], where it is

made clear that convex optimization allows the formulation of complex beamforming de-

sign problems. In [89] the challenges of distributed transmit beamforming are investigated,

where two or more transmitters simultaneously send a common message while control-

ling their power and phase such that the message is successfully received and decoded at

a certain receiving node. Several proof-of-concept prototypes are discussed, and their re-

sults are summarized. Significant gains in energy efficiency achieved by using distributed

transmit beamforming are accompanied by a trade-off against implementation complexity

and overhead [90].

4.3 System Model

In order to formulate our power control and beamforming problem, we introduce our

communication-theoretic system model and derive expressions for the outage probabil-

ity of different transmission cases in Glossy. Then, we present the quality of service (QoS)

constraints on the achievable rate, which we then use as constraints in our optimization

problems.

4.3.1 Outage Probability

To derive the outage probability, we must separate the different fundamental transmission

cases happeningwithin one flood. At the start of a flood, there is one node sending to one or

several other nodes. This communication can be modeled as a multi-cast channel consist-

ing of L point-to-point links as depicted in Figure 4.1a. During the flood, instead, multiple

nodes simultaneously transmit the same data to their neighbors and each node in receiving

mode receives from several transmitting nodes. This communication can be modeled as a

general multi-cast channel withM transmitters as demonstrated in Figure 4.1b, which can

be further broken down into L multiple-input-single-output (MISO) channels.

Multi-cast channel

We start with the multi-cast channel shown in Figure 4.1a. Node S transmits a signal x

at rate R and nodes D1, ..Dl, ..DL receive the signal yl = xhl + zl, where zl is AWGN

with z ∼ CN (0, σ2In), and hl ∈ C is the complex channel gain from transmitter S to

receiver Dl. The channels for low-power wireless devices can be assumed quasi-static,

independent, and experience flat-fading on the block length, which is a valid assumption
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(b) General multi-cast channel (M transmitters sending the same data) consisting of L multiple

input single output (MISO) channels. Such is the case at any intermediate time slot within a

Glossy flood.

Figure 4.1: The basic cases of our communication-theoretic system model.
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for low-power wireless devices such as Zigbee [5, E 5.3]. The maximum achievable rateR∗
l

over these L point-to-point channels is upper bounded by their capacity, which is given

by [72, Chapter 2]

R∗
l = log2

(
1 +

|hl|2P
σ2
l

)
, (4.1)

where P = E[x2] is the average transmit power of node S. If S sends information at a rate

R higher than the channel capacity, the reception will be erroneous and outage will occur.

The outage probability is given by Pr(R∗
l < R), which is also a lower bound on the packet

error probability [73].

General multi-cast channel

We move to the general multi-cast case shown in Figure 4.1b, which represents any inter-

mediate time slot Tslot within a Glossy flood where M nodes have just received the same

data in the previous time slot Tslot−1 and retransmit it simultaneously. Each node Sm with

m ∈ {1, 2, . . . ,M} concurrently transmits a signal xm at rate R, while node Dl receives

the signal

yl =
M∑

m=1

xmhml + zl; ∀l ∈ {1, 2, . . . , L} , (4.2)

where zl is additive white Gaussian noise with z ∼ CN (0, σ2In) and hml ∈ C is the

complex channel gain between source node Sm and destination node Dl. In Glossy, all

nodes send the same signal. Hence, x1 = x2 = · · · = xm. If the transmitters have no

channel state information, the maximum rate at which node Dl can successfully receive

all data transmitted by nodes S1, S2, . . . , SM is the achievable rate R∗
l . This rate is given

by [74]

R∗
l = log

(
1 +

|∑M
m=1 hml

√
Pm|2

σ2
l

)
, (4.3)

where Pm = E[xxH ] is average transmit power of node Sm, and [ ]H is the conjugate

transpose operation.
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4.4 Glossy Meets Power Control

There is no doubt that Glossy excels at providing ultra-fast and highly reliable network

flooding along with accurate time synchronization [6]. However, in standard Glossy, all

nodes transmit with rate R = 250 kbps and typically with a power of 0 dBm [7]; these

values correspond to the default and maximum settings as prescribed by the IEEE 802.15.4

standard, respectively. Hence, Pm is a constant value for all m ∈ M the transmitting set.

The corresponding outage probability in this case is Pr(R∗
l (hm) < R), which is indepen-

dent of the transmit power Pm. As we will show, this approach performs sub-optimally

from an energy point of view and can be further improved by using power control and

beamforming to efficiently allocate power resources which leads to a decrease in energy

consumption of the entire network, hence, improved energy efficiency.

To do so, a receiving set of nodes Lm has to be established for each transmit node m.

The communication range threshold θ is defined such that any node within a distance θ

of a transmitting node m is added to the receiving set Lm of this transmitter. Choosing

the value of θ and its effect on the energy efficiency is distinct for each of the following

approaches and will be analyzed and discussed thoroughly.

4.4.1 Centralized Power Control and Beamforming

In order to examine the effect of introducing power control and beamforming on the en-

ergy efficiency of Glossy, we begin with the centralized scheme, which produces global

optimum power control and beamforming decisions. This scheme utilizes the assumption

of having a central arbitrator with complete channel state information knowledge of the

entire network. Thus, it is able to determine the global optimum strategy for power as-

signment and beamforming.

Operation

As illustrated in Figure 4.2 each transmitting node m has a specific transmission range θ

in which all non-transmitting nodes l /∈ M are considered possible receivers. This trans-

mission range is identical and fixed for all nodes in the network. In case of more than

one transmitter M ≥ 2, the global receiving set L =
M⋃
i=1

Lm includes all nodes within the

transmitting range of any transmitterm, as can be seen in Figure 4.3 where both nodesN1

and N2 are transmitting.
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Figure 4.2: Global receiving set of nodesL in the centralized power control and beamform-

ing scheme for the case of one transmitter N1. The receiving set is L = L1 =

{N2, N3, N4, N8}.
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Figure 4.3: Global receiving set of nodes L in the centralized power control and beam-

forming scheme for the case of M = 2 transmitters N1, N2. The receiving set

is L = L1

⋃L2.
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Figure 4.4: Local receiving sets of nodes L1,L2 in the distributed power control scheme

for the case of M = 2 transmitters N1, N2. The receiving sets are L1 =

{N3, N4, N8, N9},L2 = {N5}.

Analysis

Let w denote the beamforming weight vector (i.e. transmit power weights) applied to the

M transmitters, and let hl denote the M × 1 complex vector representing the channel

gains from each transmitter m to the receiver l ∈ L. Under the assumption of zero-mean

transmit signals with unit variance, the received SNR for receiver l is

SNRl = |wHhl|2/σ2
l , (4.4)

Therefore, the outage probability expression becomes

Pr
(|wHhl|2 < (2R − 1)σ2

l

)
. (4.5)

In order to get the constraint for successful reception, i.e., quality of service (QoS) con-

straint, the normalized channel vector is defined as

hl̃ := hl/
√

(2R − 1)σ2
l , (4.6)

such that (
|wHhl̃|2 ≥ 1

)
. (4.7)
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Hence, the power allocation and beamforming problem that minimizes transmit power,

subject to QoS constraints in (4.7) on all receiving nodes l ∈ L, can be formulated as

min
w

||w||2 ,
subject to |wHhl̃|2 ≥ 1; ∀l ∈ L .

(4.8)

Unfortunately, the optimization problem in (4.8) is a well known NP-hard problem [86].

Therefore, we use the same approach presented in [91] to recast the problem as follows:

min
w

tr
(
wwH

)
,

subject to tr
(
hl̃

H
wwHhl̃

)
≥ 1 ; ∀l ∈ L .

(4.9)

Using the definition of Gram matrix [92, p. 55], we can rewrite (4.9) as follows:

min
G

tr(G) ,

subject to hl̃Ghl̃
H ≥ 1; ∀l ∈ L ,

G � 0 ,

(4.10)

where inequality G � 0 means that G is a symmetric positive semi-definite matrix such

that

G = wHw , (4.11)

hl̃ is the normalized channel gain vector from allM transmitters to receiver l ∈ L the re-

ceiving set and hl̃
H
Ghl̃ = tr

(
hl̃

H
Ghl̃

)
[87]. TheM×M matrixG contains the transmit

power of each nodem on the diagonal and the cross-correlation of transmit signals on the

non-diagonal. In this way, we reach our goal. This technique is called a Lagrangian relax-

ation [93] and, in the general case of single stream transmission, requires that rank[G] = 1.

However, our problem can be viewed as a multi-stream transmission as presented in [94]

and explained in Section 5.3. Hence, the rank constraint can be dropped.

The programming problem in (4.10) is a convex problemwith a linear objective function,

convex constraint set and is formulated as explained in [86]. To solve this problem, we use

CVX, a Matlab package for solving convex programs [95, 96].

The centralized approach is considered our upper bound on performance and energy ef-

ficiency, since a global optimum power allocation decision is made at a central node which

possesses network wide CSI. This is a theoretical approach and serves as a benchmark of

comparison to other approaches. For a more realistic approach we introduce in 4.4.2 a dis-

tributed power allocation scheme that requires only local CSI, a valid assumption in many

networks.
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4.4.2 Distributed Power Control

We introduce a distributed approach to transmit power allocation inGlossy assuming avail-

able local CSI at transmitting nodes .

Operation

We assume that each node in the network has only local CSI and topography informa-

tion. This allows each transmitting nodem to make independent transmit power decisions,

based on the available information. A minimum communication range θmin is specified,

but each transmitting node m is allowed to increase the value of θm dynamically in order

to include at least one receiving node in its own local receiving set Lm as seen in Figure 4.4

where θ1 �= θ2.

Analysis

In order to minimize the transmit power consumption of all transmitters while still satis-

fying the rate constraints in (4.5), we must solve (4.9). However, each transmitter m must

adapt its own transmit power to accommodate the receiver l with the worst channel hml.

Therefore, we arrive at the following problem

min
Pm

Pm ,

subject to h∗
mlPmhml ≥ (2R − 1)σ2

l ; ∀l ∈ L ,

Pm ≥ 0 ,

(4.12)

where Pm is the non-negative transmit power of transmitter node m. This can be solved

independently for each transmitter m using the closed form solution

Pm =
(2R − 1)σ2

l

min
l∈L

|hml|2 . (4.13)

Therefore, satisfying the rate constraint in (4.5) for all receivers in its own local receiver

set Lm .
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4.5 Evaluation Settings and Metrics

This section uses simplified system level simulations to evaluate and compare the perfor-

mance of different power control and beamforming schemes when applied to state-of-the-

art Glossy. We follow the same simulation settings presented in Section 3.5. However, we

define new compared schemes and performance metrics to better evaluate our proposed

approaches.

Compared schemes

We compare standard Glossy to both a centralized and distributed power control schemes.

We set the re-transmission limit of Glossy to N = 3 based on experience from extensive

real-world experiments [6, 7]. For the proposed approaches, we set N = 1 since the re-

ception of data is insured by the constraints of our power optimization problem. We study

the impact of θ on the performance of both schemes.

Performance metrics

We compare the previously mentioned schemes in terms of energy efficiency, which is de-

fined as the average amount of data successfully disseminated through the network during

one Glossy flood, divided by the energy consumed by the entire network in the process.

We compute energy efficiency in Kbit/Joule of the network for packets that carry an 8-byte

payload. It is important to note that although the power optimization is done under QoS

constraints, this guarantees QoS of individual stages within one flood but not the QoS of an

entire flood. Therefore, some nodes may not be able to receive the data due to topography

limitations, for example.

4.6 Results and Discussion

To assess the gains of introducing power control and beamforming in terms of energy

efficiency, we plot in Figure 4.5 the energy efficiency of Glossywithout power control, Glos-

sy with centralized power control and beamforming, and Glossy with distributed power

control and beamforming. We consider a network of 50 nodes placed in a 50 m × 50 m

area for different values of the communication range threshold θ.

Looking at the centralized scheme, we see that the optimum value for θ is around 20 me-

ters achieving almost 10 Kbit/Joule, which corresponds to a three-fold increase in energy
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Figure 4.5: Energy efficiency of standard glossy, centralized and distributed power control

and beamforming schemes for different θ values, in a network that consists of

50 nodes and is 50m × 50m in size.

efficiency over state-of-the-art Glossy. This, in a sense, serves as an upper bound on the en-

ergy efficiency of Glossy when using power control and beamforming. It can also be seen

that the centralized approach performs worst for small values of θ. This is a consequence

of having an unconnected graph due to the small range of receiving sets θ, resulting in

very low packet reception ratios (defined as the number of nodes that correctly receive all

packets divided by the total number of nodes in the network), hence low energy efficiency.

For the distributed scheme, we observe a gains in energy efficiency over state-of-the-

art Glossy up to θ = 15 m. Since each node chooses its own θ dynamically depending

on the network topology information, the distributed scheme does not experience graph

non-connectivity. Therefore, it outperforms all other schemes for lower values of θ. How-

ever, for higher values of θ, each node has a large receiving set Lm and must satisfy the

rate conditions for all l ∈ Lm together with stronger overlap between receiving sets Lm.

This results in excess transmit power usage, which in turn lowers the energy efficiency

significantly.

We now examine a sparser network in Figure 4.6 wherewe consider only 25 nodes placed
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Figure 4.6: Energy efficiency of standard glossy, centralized and distributed power control

and beamforming schemes for different θ values, in a network that consists of

25 nodes and is 50m × 50m in size.

in the same 50 × 50 meter square area. We notice that the optimum values of θ for the

centralized and distributed power control schemes have increased. This is intuitive; due to

the sparsity of the network, transmission ranges need to be expanded in order to achieve

network graph connectivity. The total amount of energy consumed in disseminating the

packet in a 25 node network is significantly less than that consumed in a 50 node network,

resulting in increased maximum energy efficiency of all schemes. This means that nodes

must use more transmit energy to reach further away (i.e. larger θ). However, this is com-

pensated by the lower number of transmitters. This is valid until θ becomes too large and,

in turn,the transmit power becomes too large without achieving higher packet reception

ratios, which results in a degradation of energy efficiency. Therefore, a fine tuning of θ is

crucial to an energy efficient operation.

Challenges and solutions

There are many ways to formulate a distributed power control and beamforming strategy.

By exploring different approaches to applying power control and beamforming in Glossy
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in a distributed, or semi-distributed fashion, we can achieve eventually higher energy ef-

ficiency gains while approaching the upper bound. In [97] the best response team power

control problem for interference channel with local CSI is studied. An algorithm con-

verging to a best response power control policy is introduced and optimum power control

policies can be computed. Applying team decision strategies to our power control and

beamforming problem in network flooding is an interesting direction and represents the

logical next step following this work. However, there is one more challenge. The availabil-

ity of CSI at the transmitter is crucial to successfully solving the presented beamforming

problem. In the next chapter, we further investigate this challenge and present a robust

beamforming approach that relies on limited feedback in order to acquire imperfect quan-

tized CSI.



74 4 Beamforming with Perfect CSI

4.7 Conclusions

In this chapter, we studied the Glossy protocol with clean-slate physical and medium ac-

cess control layer that use power control and transmit beamforming methods under the

assumption of perfect CSI availability. It was shown that flexible power control and dis-

tributed multi-cast beamforming approaches, well known from coordinated multi-point

transmission and reception in cellular communications and standardized in LTE/A, can

lead to significant gains in terms of energy efficiency. By studying centralized power as-

signment, an upper bound on the energy efficiency was acquired which exceeds the energy

efficiency of standard Glossy by several folds. We proved that optimal operating setting

is dependent on the radius of the receiving set θ; and that for small values of θ, energy

efficiency is degraded. Distributed power control and beamforming was shown to be most

advantageous for smaller values of θ, due to the dynamically chosen values of θ inde-

pendently by each transmitter based on topography information. This suggests to take

another look at the corresponding PHY and MAC standards in order to make the system

ready to address the scalability and efficiency challenges facing the massive deployment

of low-power sensor networks.



CHAPTER

5
ROBUST BEAMFORMING WITH LIMITED FEEDBACK

In this chapter we move towards a more realistic scenario where CSI is not available at the

sensor nodes, as is the case for most WSNs. Therefore, a two-stage cooperative scheme

is required. First, receiving nodes must cooperate with transmitting nodes in order to

perform channel estimation. Then, transmitting nodes collaborate with each other in or-

der to successfully perform distributed transmit beamforming without a central controller.

The cost of cooperation in terms of energy consumption is taken into account and is rep-

resented by the energy consumed in the process of channel state information feedback

from receiving to transmitting nodes. We note that there are several other factors that

contribute to the processing overhead of collaborative distributed multi-cast beamforming

[98] in actual hardware implementations, but for the scope of this dissertation we focus on

the theoretical analysis of the proposed approach. We leave the physical implementation

and accompanying impairments for future research. The result of this analysis is a clear

trade-off between implementation complexity and energy efficiency [90] as will be shown

in Section 5.5. Moreover, we analyze the consequences of increasing the number of col-

laborating nodes on energy efficiency. We use the term coalition to denote a number of

transmitters that collaborate in order to performmulti-cast beamforming during any inter-

mediate stage of a Glossy flood. We describe and analyze the performance of an algorithm

that maximizes energy efficiency in cooperative network flooding by forming coalitions of

transmit nodes.

5.1 Motivation and Contribution

Vastly distributed sensors are becoming an important part of our daily lives where they

are utilized in many applications and diverse fields such as smart homes, environmental

monitoring, emergency and health [99, 100]. Furthermore, recent 5G initiatives show a
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clear focus on energy efficient smart cooperative transmission protocols [101]. These ini-

tiatives are partially motivated by the importance of energy efficiency in large-scale wire-

less networks for internet of things (IoT) and cyber-physical systems applications [102].

The devices used in these applications are usually heavily distributed, which makes it very

challenging to replace or recharge them in a frequent manner. Therefore, extending their

battery life becomes crucial. Optimizing energy will help extend the expected lifetime of

these small battery operated devices, and facilitate their large scale deployment. To this

end, we have proposed in Chapter 4 a power control and beamforming approach in order

to improve energy efficiency and extend sensor nodes’ battery life. However, this approach

is based on the assumption of CSI availability at all nodes. In real WSN deployments, indi-

vidual sensor nodes do not have CSI knowledge. However, in some cases network topog-

raphy information might be available. This calls for a scheme where sensor nodes are able

to acquire CSI in an energy efficient manner, in order to successfully perform multi-cast

beamforming.

5.1.1 Contribution and Structure

In order to tackle the problem of CSI unavailability in sensor nodes, we extend the develop-

ment presented in Chapter 4 where a device-to-device wireless multi-hop communication

scenario with resource-constrained devices that require energy-efficient connectivity is

considered. Based on the recently proposed Glossy network flooding protocol [6], that fol-

lows the IEEE 802.15.4 low-rate wireless personal area networks (LR-WPANs) standard, the

beamforming and power control problem is formulated, analyzed and assessed in network

scenarios where the same information needs to be shared with all nodes. Performance

measures are compared, where the use of beamforming has proven to improve energy ef-

ficiency significantly. Moreover, this chapter contributes the following:

• We introduce a new system model for the general multi-cast channel that takes into

consideration the feedback process needed for channel estimation.

• We formulate the problem of robust multi-cast beamforming under the assumption

of imperfect CSI as a convex optimization problem and provide a solution to the

relaxed approximation of the problem.

• We propose and describe a scheme where the beamforming problem can be solved

independently at each node in an energy efficient manner.
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• We discuss the effect of feedback quantization on energy efficiency and show there

exists an optimum number of quantization bits that maximizes energy efficiency.

• We propose a greedy algorithm that allows nodes to form coalitions where the par-

ticipating nodes are chosen in a way that maximizes energy efficiency.

• We compare the proposed approaches in terms of their energy efficiency to the stan-

dard Glossy through numerical simulations.

First, we begin with presenting a brief overview of distributed and collaborative beam-

forming (DCBF) in Section 5.2. Then, we describe the system model in Section 5.3, where

we also explain the proposed CSI feedback approach and introduce our problem statement.

In Section 5.4, we formulate our general robust multi-cast beamforming problem under

limited feedback, building therefore upon the analysis and results presented in Chapter 4.

Then, we analyze the effect of feedback bits B and coalition size on energy efficiency in

Section 5.4.1 and Section 5.4.2, respectively. Next, we support this analysis with simulation

results presented and discussed in Section 5.5, where we illustrate how the robust beam-

forming problem can be solved for application specific requirements. Finally, we present

some concluding remarks in Section 5.6.

5.2 Distributed and Collaborative Beamforming (DCBF)

Cooperation in wireless networks is a topic that has attracted the attention of researchers

for many years [103]. One form of cooperation is distributed and collaborative beamform-

ing, which is defined as a techniquewhere independent and randomly located source nodes

cooperate to transmit a common radio frequency signal, hence forming a virtual antenna

array [83]. This cooperation improves the life time of the sensor nodes [104], proving to

be valuable for systems with limited battery life. It also shines as a promising technique

to empower many 5G technologies such as machine type communication (MTC), device to

device communication (D2D), and internet of things (IoT).

Initially, research on collaborative distributed beamforming in sensor networks was di-

vided into two directions [105]: Collaborative and Distributed. On one hand, collaborative

beamforming focused on beam pattern analysis while assuming perfect phase and carrier

synchronization between sensor nodes [106]. On the other hand, distributed beamform-

ing focused on the feasibility of achieving synchronization between those nodes [107].

However, some work was done in order to explore the possibility of achieving coopera-

tion without synchronization such as in [108]. Later on, both directions started merging
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Figure 5.1: Research directions in DCBF in wireless networks. The purple colored node

"Energy efficiency maximization" represents the direction to which our work

belongs.
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forming distributed collaborative beamforming. The recent survey [105] classifies research

trends in this area very clearly, from which the mind map in Figure 5.1 is adapted. This

classification indicates that our work, where we maximize energy efficiency in network

flooding by applying distributed collaborative beamforming (DCBF), lies within the scope

of power minimization and lifetime maximization, more precisely under energy efficiency

maximization.

Previous research efforts in this direction has several performance metrics for the eval-

uation of DCBF. Network life time is usually defined as the time duration from the start

of network operations till the first node runs out of battery [104]. In [109] a power al-

location algorithm using convex optimization is used to maximize network lifetime. On

the other hand, total energy consumption is defined as the sum of total consumed energy

of each node in transmit, receive and idle phases of operation [6]. In some works e.g.,

[104], only transmit power is considered in the total energy consumption. In [110] an al-

gorithm using a convex optimization is proposed to minimize total energy consumption

under individual power constraints in two-hop networks. Another approach by [104] using

genetic algorithm is proposed to minimize transmit energy consumption and increase net-

work lifetime. Moreover, maximizing energy efficieny is the goal of [111] where sequential

quadratic programming is used to solve the problem of optimal node allocation, they also

show the effects on spectral efficiency. Robust distributed beamforming is considered in

[112], where beamforming is used to minimize total relay transmit power under signal-to-

noise ratio constraints with the availability of perfect channel state information. Recently,

more works have investigated the performance of beamforming with imperfect CSI in an

effort to make it more robust. In [113], a robust adaptive beamforming approach is pro-

posed to battle the effect of signal steering vector mismatches. The proposed approach is

based on the optimization of worst case performance and shows significant performance

gains over other adaptive beamforming methods. Another scenario where receivers have

perfect CSI and can specify beamforming vectors to transmitters is investigated in [114],

where random vector quantization is shown to be asymptotically optimal. Later in [115],

robust beamforming is used to optimizeworst case received power gainswhen transmitters

have imperfect CSI. The worst case achievable rates are derived based on a deterministic

uncertainty model for the channel estimation error. An effort to investigate distributed

beamforming under limited feedback in cooperative networks is made in [116], where an

optimal beamforming vector is proposed to maximize the received signal-to-noise ratio at

the receiver. Although only a fixed number of feedback bits is considered, results prove

that this scheme is indeed beneficial in terms of performance.
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Figure 5.2: System model of a single-hop multi-cast beamforming channel, consisting of

K = 5 transmitting nodes and L = 3 receiving nodes. K1 = 3 nodes are

cooperating andK2 = 2 nodes are operating individually, whereK = K1+K2.

Feedback channels are considered error-free.

5.3 System Model

Our approach can be viewed as an adaptive transmit diversity scheme. The transmission

protocol starts, as in standard Glossy, with one node initiating the flood. This initial phase

is a simple multi-cast transmission as explained in Section 4.3, where one node transmits

a message, and nodes within reception range receive it. After successful reception of the

message by, let us say,K nodes, these nodes become transmitters in the next time slot. In

standard Glossy, allK nodes proceed to transmit the same information simultaneously in

a non-cooperative way using the maximum transmit power setting. Here, we propose to

define K1 ⊆ K of cooperating nodes which acquire CSI from the receiver through lim-

ited feedback, in order to perform multi-cast beamforming. The remainingK2 = K −K1

nodes do not cooperate and operate as in standard Glossy. Please note that the case of

K1 = ∅ is standard Glossy. An example of the system model is shown in Figure 5.2, where

K = 5 nodes, which have successfully received and decoded the message from last trans-

mission, send the same data x to L = 3 receiving nodes. First, CSI is sent back from the

receivers to the transmitters through a limited-bandwidth error-free feedback channel as

shown in Figure 5.2 using quantization as thoroughly explained in Section 5.3.1. Then, each

transmitting node constructs an imperfect estimated channel matrixH using the acquired
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feedback and proceeds to calculate an energy efficient coalition to which all or subset of the

K nodes (K1 nodes), can participate. The formation of this coalition is based on a greedy

approach that can be executed at each transmitting node independently. This is explained

in more details in Section 5.4.2. Afterwards, the information is divided into K = 5 sym-

bols where the first 3 symbols [x1, x2, x3] are cooperatively transmitted by K1 nodes one

to three, while symbols x4 and x5 are transmitted byK2 nodes four and five, respectively.

The coalition of three nodes, solves an energy efficiency optimization problem that will be

formulated and discussed in Section 5.4, and cooperatively transmits the information form-

ing a virtual antenna array that uses energy efficient robust beamforming by applying the

precoding matrix (beamforming matrix) W , while the remaining two nodes operate in

standard Glossy mode and transmit using maximum power p. The received signal at any

receiver l can be characterized as follows

yl = xTUhl + zl, (5.1)

where cooperation is controlled by theKxK matrix

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

W 0 0

0 0

0 0 0
√
p 0

0 0 0 0
√
p

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.2)

xT = [x1...x5] are the data symbols, W is the K1xK1 beamforming matrix, hT
l =

[h1l, ...h5l] is the channel gain vector between receiver l and the transmitting nodes, and zl

is the receiver noise. The [ ]T describes the transpose operation. After the signal reception,

interference cancellation methods (i.e., minimum mean square error (MMSE) and succes-

sive interference cancellation (SIC)) are applied at each receiving node before the original

message x can be retrieved. The maximum rate achieved by applying such processing at

any receiver node l to the received signals can then be calculated as following

R∗
l = max

U
E

[
log

(
1 +

hH
l U

Hx∗xTUhl

σ2
l

)]
, (5.3)

where the expectation operation E[ ] is over channel state information hl. However, re-

ceivers provide CSI feedback to transmitting nodes. Therefore, choosing an optimal beam-

forming matrix for fed-back channel realizations can lead to a maximum achievable rate
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of:

R∗
l = log

(
1 +

hH
l U

Hx∗xTUhl

σ2
l

)
. (5.4)

By applying MMSE and SIC techniques as demonstrated in [117, ch. 10], it can be equiva-

lently described as:

R∗
l = log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎡
⎢⎣
h1l

h2l

h3l

⎤
⎥⎦
H

WHD3W

⎡
⎢⎣
h1l

h2l

h3l

⎤
⎥⎦

σ2
l

+
|hl4|2p
σ2
l

+
|hl5|2p
σ2
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.5)

where hil is the channel gain coefficient from transmitter i to receiver l, D3 is a diagonal

matrix with the weights of data streams and is equal to the identity matrix I , [WHD3W ]

is the transmit covariance matrix as shown in [94], the [ ]∗ and [ ]H describe the conjugate

and conjugate transpose operations, respectively. Using the definition of Gram matrix [92,

p. 55], we can rewrite the achievable rate equation as follows:

R∗
l = log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎡
⎢⎣
h1l

h2l

h3l

⎤
⎥⎦
H

G

⎡
⎢⎣
h1l

h2l

h3l

⎤
⎥⎦

σ2
l

+
|hl4|2p
σ2
l

+
|hl5|2p
σ2
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.6)

where

G = WHW (5.7)

is a positive semi-definite matrix. This can be generalized to the case of K = K1 + K2

transmitters with K1 cooperating nodes andK2 non-cooperating nodes as follows

R∗
l = log

(
1 +

hlGhH
l

σ2
l

+
K∑

i=K1+1

|hil|2p
σ2
l

)
(5.8)

where hT
l = [h1, h2...hK1 ] ,G is aK1xK1 positive semi-definite matrix, and p is the maxi-

mum transmit power of the node. Moreover, for the case where all transmitting nodes are
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cooperating, the maximum achievable rate can be described as

R∗
l = log

(
1 +

hlGhH
l

σ2
l

)
(5.9)

with KxK positive semi-definite matrixG.

Channel Model

In order to examine the effect of limited feedback on a complex communication scenario

such as Glossy, we must specify our channel characteristics, similar to the channel model

used in Chapter 4. We start with the signal received at receiver l, described in (5.1). Channel

vectors of receivers 1 to Lwith hT
l = [h1l, h2l, ....hKl] and hkl ∈ C is the channel gain from

transmitter k to receiver lmodeled as quasi-static, independent, and experience flat-fading

on the block length, which is a valid assumption for low-power wireless devices such as

Zigbee [5, E 5.3]. These coefficients are calculated according to hkl = wklgkl, where small-

scale fadingwkl follows a complex normal distribution CN (0, 1), and large-scale fading gkl

depends on the distance dkl between transmitter k and receiver l [5, E 5.3] as follows

gkl =

{
40.2 + 20 log(dkl), dkl ≤ 8m,

58.5 + 33 log(dkl/8), dkl > 8m.
(5.10)

which corresponds to a path loss exponent of 2 for the first 8m and a path loss exponent

of 3.3 for distances larger than 8m. To ensure gkl > 0 according to (3.14), we consider

only topologies where the distance between any pair of nodes exceeds 0.1m, which is

reasonable in real deployments [75]. We denote the normalized channel vector hl̃ =
hl

||hl|| ,

wherehl̃ is a unit vector that describes only the channel direction. Moreover, in our model,

transmitters are assumed to know the channel quality information (CQI), represented by

||hl||, perfectly, while each receiver l is assumed to know local CSIhl through pilot training

[118, 119] at the beginning of transmission which is not the focus of this work. CSI is

then quantized and shared with transmitting nodes through a limited feedback channel

as described in Section 5.3.1. Finally, zl is additive white Gaussian noise with a complex

normal distribution zl ∼ CN (0, σ2
l ).

5.3.1 CSI Feedback

Quantization is done using randomly generated vector quantization codebooks indepen-

dently at each receiver. A code book CB contains 2B K-dimensional unit norm vectors

randomly drawn from the isotropic distribution on the K-dimensional unit sphere where
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CB Δ
= {c1, c2, ....c2B}. In addition to being mathematically tractable, RVQ performs close

to optimal quantization as feedback bits B −→ ∞ [114]. This can be independently applied

at each receiver l where the closest vector ci to the normalized real channel hl̃ is chosen.

The index i is then transmitted to active transmitters usingB feedback bits. The RVQ pro-

cess is performed such that the closest vector ci to the normalized real channel hl̃ has to be

chosen. We consider the Euclidean distance, defined as the norm of the difference between

ci and hl̃, as a measure of closeness. Each receiver must choose the closest vector ci to the

normalized channel hl̃ independently. This is done by solving the following problem

il = arg min
1≤i≤2B

||hl̃ − ci||2. (5.11)

Since the norm of the error vector is

||δl||2 = ||hl̃ − hl̂||2, (5.12)

where the hl̂ is the quantized channel vector based on the Euclidean distance, this manner

of choosing the quantized channel vector results in the smallest error norm possible. Un-

fortunately, the statistical behavior of this error is not available in closed form. However,

we assume that εl is an upper bound on the norm of quantization error such that ||δl|| ≤ εl.

Feedback Overhead

Feedback is the operation of sharing quantized CSI between receivers and transmitters.

Each receiver node l must quantize and share its CSI using the feedback channel. Thanks

to the broadcast nature of the wireless medium and assuming error free feedback channels,

it is safe to assume that any wireless signal received successfully by the furthest node, can

be received by all other nodes and the power needed for reliable transmission is at least

Pl = (2B − 1) max
1≤j≤K,j �=l

|dlj|2, (5.13)

where dlj is the distance from receiver l to transmitter j, operator |.| denotes the Euclidean
norm and Pl is defined as the transmission power needed to distribute CSI from receiver l

to all transmitters. The total feedback energy overhead is computed as follows

Pcoop = (2B − 1)
L∑
l=1

max
1≤j≤K,j �=l

|dlj|2, (5.14)

where we can see the exponential dependency of Pcoop on the number of feedback bits B

and linear dependency on the distances between receivers and transmitters. This means
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that increasing the number of feedback bitsB will result in a higher cooperation over head

in terms of Pcoop, but will also result in a more accurate estimation of the channels, leading

to less transmit power. Therefore, there must be an optimum number of feedback bits B

that minimizes total energy consumption and maximizes energy efficiency. This brings us

to our problem statement, which we present in Section 5.3.2.

5.3.2 Problem Statement

In order to efficiently manage network resources and achieve high energy efficiency in

state-of-the-art Glossy [7, 27], we seek to analyze the feasibility of using power control and

transmission cooperation schemes such as coherent multicast beamforming. To achieve

our goal, we first look at the problem of limited feedback, where receiving nodes try to

share their CSI with transmitting nodes using B feedback bits. Increasing the number of

feedback bits B used in CSI sharing results in a better representation of the channels and

lower quantization error. However, the consumed energy overhead by reliably transmit-

ting these feedback bits increases as well. This results in a clear trade-off between the

cooperation gain achieved by coherent multicast beamforming amongst the K transmit-

ting nodes and the consumed energy overhead due to CSI feedback. Therefore, there must

exist an optimal B, dependent on network parameters such as topology, number of trans-

mitters K and density of the network, that maximizes energy efficiency. This allows us

to solve a programming problem, that depends on the CSI uncertainty parameter εl and

in turn optimal B, that maximizes energy efficiency under quality of service constraints

(QoS) and guarantees successful reception as follows

min
G

tr(G) , (5.15)

subject to
(
hl̂ + δ

)
G
(
hl̂ + δ

)H

≥ (2R − 1)σ2
l

||hl||2 ; ∀l ∈ L , (5.16)

∀δ : ||δ|| ≤ ε , (5.17)

G � 0 , (5.18)

where all transmitters are assumed to be cooperating, and minimizing the beamforming

transmit powers tr(G) and the feedback power under 3 inequality constraints. Inequal-

ity (5.16) ensures the achievable rate robustness against CSI uncertainty, inequality (5.17)

limits the maximum CSI uncertainty error, and inequality (5.18) insures that cooperation

multicast beamforming covariance matrix G is positive semi-definite. This programming
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problem results in maximizing the energy efficiency and is solved and discussed in more

details in Section 5.4 and Section 5.4.1. lastly, we look at the problem of choosing cooper-

ating nodes. We investigate how the choice of cooperating transmitters K1 affect energy

efficiency, whether there exists an optimum coalition and how to form it.
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5.4 Beamforming with Limited Feedback

In Chapter 4, we considered the case of multicast beamforming under the assumption of

perfect CSI available at both transmitter and receiver. The following programming problem

was solved in Section 4.4 for the optimal precoderG

min
G

tr(G) ,

subject to hlGhH
l ≥ (2R − 1)σ2

l ; ∀l ∈ L ,

G � 0 ,

(5.19)

where the inequality G � 0 means that G is a positive semi-definite matrix. The pro-

gramming problem in (5.19) is a convex problem with a linear objective function, convex

constraint set and is formulated as explained in [86]. To solve it, we use CVX, a Matlab

package for solving convex programs [95, 96].

Unfortunately, perfect CSI knowledge at the transmitter side is not always possible, as

in scenarios where limited feedback is considered. Therefore, based on the available CSI

provided to the transmitters through limited feedback channels and using the uncertainty

model explained in Section 5.3.1, the transmitter has to estimate the real channels in order

to calculate the appropriate beamformer. First, in order to satisfy the QoS constraints at

each receiver l the following must hold

log

(
1 +

hlGhH
l

σ2
l

)
≥ R ; ∀l ∈ L . (5.20)

The real channel hl can be written in terms of the quantized channel direction hl̂ and

the channel norm ||hl|| as such

hl = ||hl||hl̃ = ||hl||
(
hl̂ + δl

)
. (5.21)

We assume that both hl̂ and ||hl|| are known by the transmitter. Therefore, after some

algebraic manipulations, (5.20) can be written as

(
hl̂ + δl

)
G
(
hl̂ + δl

)H

≥ (2R − 1)σ2
l

||hl||2 ;

∀l ∈ L , ∀δl : ||δl|| ≤ εl ,

(5.22)

where εl is an upper bound on the norm of quantization error. In order to design a beam-

former that is robust against quantization error, the transmitters must minimize the trans-
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mit power while satisfying the rate constraints in (5.22). Using (5.22) and (5.19), the robust

beam-forming optimization problem can be formulated as in (5.15)

Since the quantization error vector δl is random and exact knowledge of its direction

is not available at the transmitter, we modify the optimization problem mathematically so

it can be solved numerically. To that purpose, we apply some simplification and algebraic

modifications to the constraints in (5.22) similar to the analysis done in [120]. The robust

beam-forming optimization problem in (5.15) becomes equivalent to the following semi

definite programming problem which can be solved by a matlab tool for convex optimiza-

tion known as CVX [95, 96]

min
GQ,μ

tr(G) ,

subject to hl̂ (G−Q)hl̂

H − ε2l μ ≥ (2R − 1)σ2
l

||hl||2 ;

∀l ∈ L , μ ≥ 0 , G � 0 ,[
Q G

G G+ μI

]
� 0 .

(5.23)

Based on S-procedure and Schur Complement as explained in Appendix A and B, respec-

tively, we first transform the rate constraints in (5.22) as

δlGδH
l + 2R

{
hl̂GδH

l

}
+ hl̂Ghl̂

H − z ≥ 0 ;

∀l ∈ L , ∀δl : −||δl||2 + ε2l ≥ 0 ,
(5.24)

where z =
(2R−1)σ2

l

||hl||2 , and ||δ||2 = δHδ. According to S-Procedure, this holds if and only if

there exists μ ≥ 0 such that

[
G+ μI Ghl̃

H

hl̃G hl̃Ghl̃
H − ε2l μ− z

]
� 0 , (5.25)

This provides us with 2 separate cases for μ. First, we examine the case where μ > 0.

Using Schur Complement, (5.25) can be written as

hl̃Ghl̃
H − ε2l μ− z − hl̃G [G+ μI]−1 Ghl̃

H ≥ 0 ,

hl̃Ghl̃
H − hl̃G [G+ μI]−1 Ghl̃

H − ε2l μ ≥ z .
(5.26)

We introduce Q, where Q � G [G+ μI]−1 G. The robust beam-forming optimization
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problem in (5.15) can be rewritten as

min
GQ,μ

tr(G) ,

subject to hl̂Ghl̂

H − hl̂Qhl̂

H − ε2l μ ≥ z ,

∀l ∈ L , μ > 0 , G � 0 ,

Q− [G+ μI]−1 G � 0 .

(5.27)

By applying Schur Complement to the constraint in (5.27), it can be transformed equiv-

alently into

min
GQ,μ

tr(G) ,

subject to hl̂ (G−Q)hl̂

H − ε2l μ ≥ z ;

∀l ∈ L , μ > 0 ,G � 0 ,[
Q G

G G+ μI

]
� 0 .

(5.28)

Second, for μ = 0, (5.25) amounts to

[
G Ghl̃

H

hl̃G hl̃Ghl̃
H − z

]
� 0 . (5.29)

From the definition of a positive semi-definite matrix, it follows that

[
−hl̃

H
1
] [ G Ghl̃

H

hl̃G hl̃Ghl̃
H − z

][
−hl̃

1

]
= −z ≥ 0 (5.30)

holds only for z = 0, which means that the constraints in (5.28) can be satisfied for the

case of μ = 0 by having Q = G and can hereby be included into (5.28), arriving to the

final result in (5.23). Algorithm 2 shows the operations done at each transmitting node

after receiving the feedback signal.
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Algorithm 2 Transmitter Operations

1: Input: Pro, K, εl.

2: Output: G.

3: Calculate:

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
G,Q,μ

tr(G) ,

subject to hl̂ (G−Q)hl̂

H − ε2l μ ≥ (2R − 1)σ2
l

||hl||2 ;

∀l ∈ L , μ ≥ 0 , G � 0,[
Q G

G G+ μI

]
� 0.

4: Multicast transmission.

Algorithm 3 Feedback Generation

1: Input: Pro, K,R.

2: Output: B∗.

3: Calculate:

B∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
B,εl,G,Q,μ

tr(G) + (2B − 1) max
1≤j≤K,j �=l

|dlj|2,

subject to hl̂ (G−Q)hl̂

H − ε2l μ ≥ (2R − 1)σ2
l

||hl||2 ;

μ ≥ 0 , G � 0,[
Q G

G G+ μI

]
� 0.

4: Transmit feedback with power Pl = (2B
∗ − 1) max

1≤j≤K,j �=l
|dlj|2.
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5.4.1 Feedback Optimization

First, we evaluate the effect that the number of feedback bits B has on energy efficiency

of an arbitrary single hop within a Glossy flood. This is the first step towards optimizing

the number of feedback bits B from an energy efficiency point of view. To do so, we must

define our performance measures. So we begin by defining energy efficiency as introduced

in [121] as follows

EE =
Goodput

Total energy consumption
, (5.31)

where, in our scenario, the average Goodput is defined, similar to the formulation in [122],

as the average successfully received rate at each receiver, and the total energy consumption

is the sum of transmit energies for all K transmitters and the cooperation overhead Pcoop

as defined in (5.14). For more info about the definition of the metrics used we refer the

reader to Section 3.5 where we introduce and define Goodput and energy efficiency. The

energy efficiency can be rewritten as such

EE =
(1− Pro)R

tr(G) + Pcoop

, (5.32)

where Pro is the outage probability fixed to an application specific minimum acceptable

value, and R is the source rate fixed at 250 kbps as in the IEEE 802.15.4 standard [5].

In order to maximize energy efficiency we need to consider the following optimization

problem

max
B(ε)

EE =
(1− Pro)R

tr(G) + Pcoop

. (5.33)

Due to the fixed nominator, this problem is equivalent to

min
B(ε)

tr(G) + (2B(ε) − 1) max
1≤j≤K,j �=l

|dlj|2 . (5.34)

Unfortunately, due to the lack of a closed form expression for B in terms of ε, this op-

timization problem can not be simultaneously solved for G and B. Therefore, an offline

database created using network statistics is saved at each node, where ε can be chosen as

a function ofK,B, and Pro. An example of the offline database is shown in Figure 5.3 for

Pro = 5%. After that, the programming problem in (5.34) can be solved independently at

each receiver node for each B in order to find B∗ that achieves the minimum consumed
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Figure 5.3: An example of the offline database saved at each node where ε can be chosen

as a function of K , B, and Pro. In this example, Pro is set to 5%.

energy for the application specific Pro requirement. The feedback generation algorithm in

Algorithm 3 shows the operational steps carried out at each receiver node, while the flow

chart in Figure 5.4 shows the protocol operations flow at each node.

A simple example can be seen in Figure 5.5 with 4 transmitting nodes waiting for re-

ceiver feedback, and 3 receiving nodes executing Algorithm 3. Due to different positions,

each receiver will have a relation between consumed energy and B. The dependency of

consumed energy on the number of feedback bits B for each receiver is calculated and

shown in Figure 5.6. We can see there that it is possible thatB∗ would be different for each

receiver depending on its position in the network. In our example, receiver 1,2 and 3 will

choose 2,3 and 5 bits, respectively for feedback transmission.

5.4.2 Coalition Formation

The proposed cooperation scheme for network flooding based on Glossy is divided into 2

parts. The first part is feedback generation at receiving nodes, followed by multicast beam-

forming at transmitting nodes as explained above. The second part is a coalition formation

strategy that chooses cooperating transmitters in order to maximize energy efficiency. In

this section, we analyze the effect of coalition size and participant transmitters on energy

efficiency, and if there exists an optimal choice of cooperating nodes that maximizes energy
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Figure 5.4: Commands executed at any node during the proposed protocol.
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Figure 5.5: Sensor network example of an intermediate step during a flood with 4 trans-

mitters in green and 3 receivers in blue. Receivers generate feedback to provide

transmitters with imperfect quantized CSI.

efficiency.

For this part, we allow a subset of all transmitting nodes to cooperate. Our goal is to

show the possibility that a certain cooperating group of transmitters (coalition) exists to

maximize energy efficiency. It is important to note that this study is to show the effec-

tiveness of coalition formation and not to demonstrate how it can be implemented in a

distributed fashion. First, feedback operation is performed as explained in Section 5.3.1,

where receivers provide the CSI to the K transmitters. In order to minimize the energy

consumed in the cooperation phase, the transmitter furthest away from all receivers is

removed from the coalition. If this elimination operation improves energy efficiency of

the transmission, the next furthest away transmitter is removed. Elimination stops when

energy efficiency starts to deteriorate and the coalition is returned to the last step. This

greedy transmitter selection operation is explained in Algorithm 4.

This operation results in a coalition ofK or less transmitters. The effect of this enhance-

ment on energy efficiency and energy consumption compared to both normal Glossy and

Glossy with transmit beamforming will be demonstrated in Section 5.5.
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Algorithm 4 Greedy transmitter selection coalition formation algorithm based on mini-

mizing energy consumption and maximizing energy efficiency

1: loop

2: Calculate: max
i

max
j

|dij| Find the transmitter that is contributing themost toPcoop.

3: Remove transmitter i from the coalition.

4: Calculate new energy efficiency.

5: if Energy efficiency increases then

6: Continue Repeat from the beginning without transmitter j.

7: else

8: Break Transmitter j remains in the coalition.

9: end if

10: end loop
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5.5 Results and Discussion

We evaluate the performance of the proposed approach in 2 different cases. First, we con-

sider an intermediate stage in a Glossy floodwithK transmitters andL receivers. This case

is considered for Figure 5.7. Second, we consider a complete Glossy flood in a network of

λ nodes, where a random node initiates the flood. Then, we apply standard Glossy and the

robust multi-cast beamforming approach with and without coalition formation and eval-

uate the performance of each approach at the end of the flood, as in the case of Figure 5.8

and Figure 5.9.

We generate network topologies using a binomial point process with λ = k + L nodes

randomly and independently deployed in a square area. We then evaluate energy efficiency

using robust multi-cast beamforming for different values of network side length in meters.

Our results are averaged over 100 independent realizations of the network for the same

λ. Irrespective of the topology, all transmitting nodes have a source rate R = 250 kbps

which corresponds to the default setting as prescribed by the IEEE 802.15.4 standard. The

first step to optimize the system is solving the programming problem in (5.23) for each

receiver independently. After that, each receiver chooses the number of feedback bits B

that minimizes energy consumption. This is shown together with the algorithm steps in

Section 5.4.

5.5.1 Tightness of bounds

The programming problem in (5.23) is designed to minimize transmit power under QoS

constraints in the worst case where the quantization error is at its maximum ε. However,

minimizing transmit power does not always mean an increase in energy efficiency. Other

factors affect energy efficiency such as outage probability and feedback overhead Pcoop

which can be seen in (5.32). Modifying the optimization problem depends on the reliability

requirements of the application. For example, in critical applications, an upper bound on

the outage is needed. Therefore, we use the CDF of ||δ||2 acquired by empirical means

where outage probability is upper bounded as such Pro ≤ Pr(||δ||2 > ε2) and we solve

for ε(B,K). This bound is not a tight bound because of the random direction of the error

δ, which can result in a better or worse quantized channel hl̃ than the real channel hl,

depending on the direction of the error. Using this approach of accounting for worst case

performance, results sometimes in over satisfying the reliability requirements, hence a loss

in terms of energy efficiency. However, the system can be solved for different number of

feedback bits B and ultimately find the optimum B∗ that maximizes energy efficiency,
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Figure 5.7: Expected reception ratio based on empirical CDF of ||δ||2 and actual reception

ratio after solving the robust beamforming optimization problem.

while maintaining a maximum outage probability Pro. The tightness of our bound can be

seen in Figure 5.7, where the reception ratio resulting from solving our robust optimization

problem in (5.23) is calculated for different values of ε2. This is compared in the same plot

with the empirical CDF of ||δ||2 for the simulation scenario of K = 3 and B = 4.

It is critical here to emphasize the relationship between the CDF of ε2 and the reception

ratio. Assuming we use an ε2 corresponding to a 90% in the CDF, this means that 90% of

the square of the quantization error norm is indeed below this value, in turn, resulting in

a successful reception 90% of the time. However, It is easy to notice from Figure 5.7 that

achieving 90% reception ratio requires a smaller ε2 than the one retrieved from the CDF

information available at the transmitter. This bound can be tightened further by means of

iterated optimization, where instead of minimizing ||δ||2 we minimize δHGδ. This results

in recursively choosing a quantized channel hl̃ and a beamformer G that further maxi-

mizes energy efficiency under rate constraints, without over satisfying them. We leave

this approach for future works, and we focus on optimizing the number of feedback bits

B using offline databases stored at each node as explained in Section 5.4.

5.5.2 System level performance

We now test the performance of our proposed algorithm against state-of-the art Glossy.

We consider a network consisting of 9 sensor nodes randomly deployed in a square area
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Figure 5.8: Energy efficiency in bit/Joule evaluated at different network side lengths for

standard Glossy, robust beamforming and robust beamforming with coalition

formation

with varying side length. One randomly chosen node initiates a flood with a required

minimum reception ratio of 95% (Pro = 5%), then energy consumption and energy effi-

ciency are calculated at the end of the flood for both Glossy and the proposed algorithm.

Both metrics are plotted in Figure 5.8 and Figure 5.9 against network side length in meters.

Since the number of deployed nodes is fixed, varying the network side length can be seen

as varying the network density.

At high network densities, we notice an increase in energy consumption and decrease in

energy efficiency of the proposed approach as the network density decreases. This is due

to the distances between sensor nodes increasing, resulting in higher feedback overhead

and greater transmit powers. On the other hand, for Glossy, energy consumption and en-

ergy efficiency at high network densities do not change significantly. This reinforces our

original motivation for this work, that the use of no power control in Glossy results in
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Figure 5.9: Energy consumption in Joule evaluated at different network side lengths for

standard Glossy, robust beamforming and robust beamforming with coalition

formation

some excess energy consumption for the same performance. Energy efficiency behavior

in Figure 5.8 shows that our proposed algorithm greatly outperforms Glossy in dense net-

works, where nodes are close to each other and the cost of feedback (5.14) is not too high.

This is expected since the feedback power needed for cooperation depends on the distance

between nodes. Then, at lower network densities, the energy consumption and energy

efficiency of the proposed approach significantly increase and decrease, respectively. The

reason for this degradation in performance is the increase in feedback energy consumption.

In Figure 5.9, we can notice that the total energy consumption of the proposed approach

is more than that of Glossy for very low density networks. This is the extreme case where

even though feedback is provided by the receivers, nodes need to operate at very high

transmit powers in order to achieve successful reception. Hence, feedback overhead is a

price payed for no actual profit in performance over Glossy. Resulting in excess energy

consumption. This shows that the proposed algorithm is best suited for dense networks
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scenarios where cooperation provides an edge in energy efficiency over Glossy.

Results also show that using greedy coalition formation provides a slight increase in

energy efficiency and decrease in energy consumption of the proposed approach. This gap

is biggest around high to medium network densities, where two or three transmitters can

be dropped from the coalition in order to maximize energy efficiency. This performance

can still be improved using better coalition formation approaches while keeping in mind

the distributed nature of operation and importance of energy efficiency.

5.6 Conclusions

In this Chapter we studied the problem of robust multi-cast beamforming in Glossy under

imperfect CSI due to limited feedback. It was shown that coherent multi-cast beamform-

ing, can lead to significant gains in terms of energy efficiency. By studying the effect of

number of feedback bitsB on the performance, we show that there exists an optimalB that

maximizes energy efficiency. Moreover, the problemwas solved for a specific maximum al-

lowed outage probability, which is set as an application-dependent QoS requirement. The

results showed that stricter outage requirements result in higher values of optimalB∗. The

upper bound used on the outage probability can be tightened using iterative beamforming,

resulting in lower transmit power while still satisfying the rate constraints. However, we

leave this for future investigations. Finally, a study was performed to examine the effect of

selecting certain transmitting nodes for cooperation on energy efficiency. The simulation

results showed that energy efficiency can be further improved by reducing the number of

cooperating transmitters by means of greedy transmitter selection. The proposed robust

multi-cast beamforming approach was shown to perform best in dense networks where it

showed a significant performance edge over Glossy.





CHAPTER

6
CONCLUSION

Based on state of the art, low-power, network flooding protocol Glossy, this dissertation

introduces two energy efficient, cooperative transmission schemes for low-power wireless

communication in WSNs. With the aim of improving energy efficiency, latency and de-

creasing energy consumption, we used innovative cooperative transmission technologies

such as physical layer network coding and multi-cast beamforming, as well as tools such

as convex optimization and game theory in the analytical construction of the proposed

approaches. Moreover, we depended on system level simulations to evaluate the proposed

approaches and compare performance to standard Glossy based on different criteria.

We began by introducing MF-Glossy, a communication scheme that enables the simul-

taneous flooding of different packets frommultiple sources to all nodes in the network. We

analyzed the performance of MF-Glossy and Glossy from a communication theoretic point

of view and provided, thus far unknown, upper bounds on their performance. Our simu-

lation results showed that MF-Glossy can potentially achieve several-fold improvements

in goodput and latency over Glossy across a wide spectrum of network configurations at

lower energy costs and comparable packet reception rates. We also discussed the hardware

implementation challenges that face the deployment of MF-Glossy in real WSNs.

Then, under the assumption of CSI availability at all nodes, we introduced a power con-

trol and beamforming scheme for Glossy. We described a centralized, as well as a dis-

tributed algorithm and evaluated their performance compared to Glossy. Numerical sim-

ulations demonstrated that a centralized power control scheme can achieve several-fold

improvements in energy efficiency over Glossy across a wide spectrum of network con-

figurations at comparable packet reception rates. After that, we introduce a robust beam-

forming algorithm to battle the unavailability of CSI at transmitting nodes and the limited

nature of feedback channels from receive to transmit nodes. We showed that a two-level

cooperation scheme is required such that; receiving nodes cooperate with transmitting
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nodes providing them with quantized CSI, and transmitters cooperate through multi-cast

beamforming. Our results showed that an optimal number of feedback bits B that maxi-

mizes energy efficiency exists, and how to calculate it by solving a programming problem

that we formulated. Finally, we showed that choosing the optimal coalition of transmit

nodes can improve performance, and we introduced a greedy transmitter selection algo-

rithm to this end. System level simulations showed that coalition formation and robust

multi-cast beamforming can achieve a 100% increase in energy efficiency over Glossy in

very dense networks.

6.1 Open Research Questions

In this section, we discuss some open research questions regarding this dissertation. Hence,

orienting new directions for future work.

6.1.1 MF-Glossy Hardware Implementation

In Section 3.7, we discussed the challenges facing the deployment of MF-Glossy in real

WSNs. Based on recent implementations of the compute and forward framework, we see

that it is difficult to harness the full advantage that MF-Glossy offers over Glossy due to

two major challenges. First, lattice encoding/decoding time must be minimized in order

to achieve the latency reduction promised by MF-Glossy. This can be done through spe-

cific optimization of the encoding/decoding operations. Second, synchronization of multi-

ple concurrent transmitters must be guaranteed in MF-Glossy. Glossy guarantees micro-

second synchronization of all nodes in the network. However, it achieves this by keeping

the processing delays at every node as deterministic and fixed as possible. This must be

the case in MF-Glossy, to assure correct alignment of concurrently transmitted packets.

6.1.2 Limited Feedback Optimization

In Section 5.5.1, we discussed the issue of over satisfying the QoS constraints in (5.32).

Due to the random direction of the quantization error, the channel state can sometimes

be better than the quantized channel state. This results in reducing energy efficiency. A

possible solution for this issue is iterated optimization, where, instead of minimizing the

norm of the quantization error, we minimize the quantization error in the direction of the

beamfoming vector. However, this requires more analytical formulation as well as extra

computational resources in such resource-limited sensor nodes.
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6.2 Closing Remarks

The contributions of this dissertation provide a stepping stone towards highly intelligent

transmission in low-power wireless communication. They also prove that, the use of co-

operative transmission technologies promises huge performance gains when properly im-

plemented in WSNs.





APPENDIX

A
S-PROCEDURE

The S-Procedure gives conditions under which, a particular quadratic inequality is a con-

sequence of another quadratic inequality [123]. LetA1 andA2 be symmetric matrices, b1

and b2 be vectors, and c1 and c2 are constants. Assuming there exists some x such that;

xHA1x+ 2b1x+ c1 ≥ 0 . (A.1)

Then, the following holds

xHA2x+ 2b2x+ c2 ≥ 0 (A.2)

if and only if, there exists a μ ≥ 0, such that;[
A2 b2

b2
H c2

]
− μ

[
A1 b1

b1
H c1

]
� 0 . (A.3)





APPENDIX

B
SCHUR COMPLEMENT

The Schur complement is defined as follows. Assume having

M =

[
A B

C D

]
� 0 , (B.1)

where A,B,C, and D are matrices, and D is invertible. Then, the Schur complement of

D inM is

A−BD−1C � 0 . (B.2)

However, If A is invertible, then the Schur complement ofA inM is

D −CA−1B � 0 . (B.3)
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