7 research outputs found

    RF-Powered Cognitive Radio Networks: Technical Challenges and Limitations

    Full text link
    The increasing demand for spectral and energy efficient communication networks has spurred a great interest in energy harvesting (EH) cognitive radio networks (CRNs). Such a revolutionary technology represents a paradigm shift in the development of wireless networks, as it can simultaneously enable the efficient use of the available spectrum and the exploitation of radio frequency (RF) energy in order to reduce the reliance on traditional energy sources. This is mainly triggered by the recent advancements in microelectronics that puts forward RF energy harvesting as a plausible technique in the near future. On the other hand, it is suggested that the operation of a network relying on harvested energy needs to be redesigned to allow the network to reliably function in the long term. To this end, the aim of this survey paper is to provide a comprehensive overview of the recent development and the challenges regarding the operation of CRNs powered by RF energy. In addition, the potential open issues that might be considered for the future research are also discussed in this paper.Comment: 8 pages, 2 figures, 1 table, Accepted in IEEE Communications Magazin

    Throughput Maximization Using an SVM for Multi-Class Hypothesis-Based Spectrum Sensing in Cognitive Radio

    Get PDF
    A framework of spectrum sensing with a multi-class hypothesis is proposed to maximize the achievable throughput in cognitive radio networks. The energy range of a sensing signal under the hypothesis that the primary user is absent (in a conventional two-class hypothesis) is further divided into quantized regions, whereas the hypothesis that the primary user is present is conserved. The non-radio frequency energy harvesting-equiped secondary user transmits, when the primary user is absent, with transmission power based on the hypothesis result (the energy level of the sensed signal) and the residual energy in the battery: the lower the energy of the received signal, the higher the transmission power, and vice versa. Conversely, the lower is the residual energy in the node, the lower is the transmission power. This technique increases the throughput of a secondary link by providing a higher number of transmission events, compared to the conventional two-class hypothesis. Furthermore, transmission with low power for higher energy levels in the sensed signal reduces the probability of interference with primary users if, for instance, detection was missed. The familiar machine learning algorithm known as a support vector machine (SVM) is used in a one-versus-rest approach to classify the input signal into predefined classes. The input signal to the SVM is composed of three statistical features extracted from the sensed signal and a number ranging from 0 to 100 representing the percentage of residual energy in the node’s battery. To increase the generalization of the classifier, k-fold cross-validation is utilized in the training phase. The experimental results show that an SVM with the given features performs satisfactorily for all kernels, but an SVM with a polynomial kernel outperforms linear and radial-basis function kernels in terms of accuracy. Furthermore, the proposed multi-class hypothesis achieves higher throughput compared to the conventional two-class hypothesis for spectrum sensing in cognitive radio networks

    Reliable and Efficient Cognitive Radio Communications Using Directional Antennas

    Get PDF
    Cognitive Radio (CR) is a promising solution that enhances spectrum utilization by allowing an unlicensed or Secondary User (SU) to access licensed bands in a such way that its imposed interference on a license holder Primary User (PU) is limited, and hence fills the spectrum holes in time and/or frequency domains. Resource allocation, which involves scheduling of available time and transmit power, represents a crucial problem for the performance evaluation of CR systems. In this dissertation, we study the spectral efficiency maximization problem in an opportunistic CR system. Specifically, in the first part of the dissertation, we consider an opportunistic CR system where the SU transmitter (SUtx) is equipped to a Reconfigurable Antenna (RA). RA, with the capabilities of dynamically modifying their characteristics can improve the spectral efficiency, via beam steering and utilizing the spectrum white spaces in spatial (angular) domain. In our opportunistic CR system, SUtx relies on the beam steering capability of RA to detect the direction of PU\u27s activity and also to select the strongest beam for data transmission to SU receiver (SUrx). We study the combined effects of spectrum sensing error and channel training error as well as the beam detection error and beam selection error on the achievable rates of an opportunistic CR system with a RA at SUtx. We also find the best duration for spectrum sensing and channel training as well as the best transmit power at SUtx such that the throughput of our CR system is maximized subject to the Average Transmit Power Constraint (ATPC) and Average Interference Constraint (AIC). In the second part of the dissertation, we consider an opportunistic Energy Harvesting (EH)-enabled CR network, consisting of multiple SUs and an Access Point (AP), that can access a wideband spectrum licensed to a primary network. Assuming that each SU is equipped with a finite size rechargeable battery, we study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing error and imperfect Channel State Information (CSI) of SUs–AP links. We also design an energy management strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs can impose on the PU
    corecore