171 research outputs found

    Millimeter-wave backhaul for 5G networks: challenges and solutions

    No full text
    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    QoS-aware User Association and Transmission Scheduling for Millimeter-Wave Train-ground Communications

    Full text link
    With the development of wireless communication, people have put forward higher requirements for train-ground communications in the high-speed railway (HSR) scenarios. With the help of mobile relays (MRs) installed on the roof of the train, the application of Millimeter-Wave (mm-wave) communication which has rich spectrum resources to the train-ground communication system can realize high data rate, so as to meet users' increasing demand for broad-band multimedia access. Also, full-duplex (FD) technology can theoretically double the spectral efficiency. In this paper, we formulate the user association and transmission scheduling problem in the mm-wave train-ground communication system with MR operating in the FD mode as a nonlinear programming problem. In order to maximize the system throughput and the number of users meeting quality of service (QoS) requirements, we propose an algorithm based on coalition game to solve the challenging NP-hard problem, and also prove the convergence and Nash-stable structure of the proposed algorithm. Extensive simulation results demonstrate that the proposed coalition game based algorithm can effectively improve the system throughput and meet the QoS requirements of as many users as possible, so that the communication system has a certain QoS awareness.Comment: 14 page

    Survey of Large-Scale MIMO Systems

    Full text link

    Design and Analysis of Wideband In-Band-Full-Duplex FR2-IAB Networks

    Get PDF
    This paper develops a 3GPP-inspired design for the in-band-full-duplex (IBFD) integrated access and backhaul (IAB) networks in the frequency range 2 (FR2) band, which can enhance the spectral efficiency (SE) and coverage while reducing the latency. However, the self-interference (SI), which is usually more than 100 dB higher than the signal-of-interest, becomes the major bottleneck in developing these IBFD networks. We design and analyze a subarray-based hybrid beamforming IBFD-IAB system with the RF beamformers obtained via RF codebooks given by a modified Linde-Buzo-Gray (LBG) algorithm. The SI is canceled in three stages, where the first stage of antenna isolation is assumed to be successfully deployed. The second stage consists of the optical domain (OD)-based RF cancellation, where cancelers are connected with the RF chain pairs. The third stage is comprised of the digital cancellation via successive interference cancellation followed by minimum mean-squared error baseband receiver. Multiuser interference in the access link is canceled by zero-forcing at the IAB-node transmitter. Simulations show that under 400 MHz bandwidth, our proposed OD-based RF cancellation can achieve around 25 dB of cancellation with 100 taps. Moreover, the higher the hardware impairment and channel estimation error, the worse digital cancellation ability we can obtain

    Full-duplex transmission of multi-Gb/s subcarrier multiplexing and 5G NR signals in 39 GHz band over fiber and space

    Full text link
    [EN] We propose a stable full-duplex transmission of millimeter-wave signals over a hybrid single-mode fiber (SMF) and free-space optics (FSO) link for the fifth-generation (5G) radio access networks to accelerate the Industry 4.0 transformation. For the downlink (DL), we transmit 39 GHz subcarrier multiplexing (SCM) signals using variable quadrature amplitude modulation (QAM) allocations for multi-user services. As a proof of operation, we experimentally demonstrate the transmission of 3 Gb/s SCM signals (1 Gb/s per user) over a hybrid system consisting of a 10 km SMF and 1.2 m FSO link. For the uplink (UL), satisfactory performance for the transmission of 2.4 Gb/s 5G new radio (NR) signal at 37 GHz over the hybrid system is experimentally confirmed for the first time, to the best of our knowledge. The measured error vector magnitudes for both DL and UL signals using 4/16/64-QAM formats are well below the third generation partnership project (3GPP) requirements. We also further evaluate by simulation the full-duplex transmission over the system in terms of received optical and RF powers and bit error rate performance. A wireless radio distance of approximately 200 m, which is sufficient for 5G small-cell networks, is estimated for both DL and UL direction under the heavy rain condition, based on the available data from Spain. Furthermore, simulation for the DL direction is conducted to verify the superior performance of the system using variable QAM allocation over uniform QAM allocation. Using a variable modulation allocation, up to five users (2 Gb/s per user) can be transmitted over a hybrid 10 km SMF and 150 m FSO link.Ceske Vysoke Uceni Technicke v Praze (SGS20/166/OHK3/3T/13); European Cooperation in Science and Technology (CA19111 NEWFOCUS).Nguyen, D.; Vallejo-Castro, L.; Almenar Terre, V.; Ortega Tamarit, B.; Dat, PT.; Le, ST.; Bohata, J.... (2022). Full-duplex transmission of multi-Gb/s subcarrier multiplexing and 5G NR signals in 39 GHz band over fiber and space. Applied Optics. 61(5):1183-1193. https://doi.org/10.1364/AO.4475291183119361

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Architecture of a cognitive non-line-of-sight backhaul for 5G outdoor urban small cells

    Get PDF
    Densely deployed small cell networks will address the growing demand for broadband mobile connectivity, by increasing access network capacity and coverage. However, most potential small cell base station (SCBS) locations do not have existing telecommunication infrastructure. Providing backhaul connectivity to core networks is therefore a challenge. Millimeter wave (mmW) technologies operated at 30-90GHz are currently being considered to provide low-cost, flexible, high-capacity and reliable backhaul solutions using existing roof-mounted backhaul aggregation sites. Using intelligent mmW radio devices and massive multiple-input multiple-output (MIMO), for enabling point-to-multipoint (PtMP) operation, is considered in this research. The core aim of this research is to develop an architecture of an intelligent non-line-sight (NLOS) small cell backhaul (SCB) system based on mmW and massive MIMO technologies, and supporting intelligent algorithms to facilitate reliable NLOS street-to-rooftop NLOS SCB connectivity. In the proposed architecture, diffraction points are used as signal anchor points between backhaul radio devices. In the new architecture the integration of these technologies is considered. This involves the design of efficient artificial intelligence algorithms to enable backhaul radio devices to autonomously select suitable NLOS propagation paths, find an optimal number of links that meet the backhaul performance requirements and determine an optimal number of diffractions points capable of covering predetermined SCB locations. Throughout the thesis, a number of algorithms are developed and simulated using the MATLAB application. This thesis mainly investigates three key issues: First, a novel intelligent NLOS SCB architecture, termed the cognitive NLOS SCB (CNSCB) system is proposed to enable street-to-rooftop NLOS connectivity using predetermined diffraction points located on roof edges. Second, an algorithm to enable the autonomous creation of multiple-paths, evaluate the performance of each link and determine an optimal number of possible paths per backhaul link is developed. Third, an algorithm to determine the optimal number of diffraction points that can cover an identified SCBS location is also developed. Also, another investigated issue related to the operation of the proposed architecture is its energy efficiency, and its performance is compared to that of a point-to-point (PtP) architecture. The proposed solutions were examined using analytical models, simulations and experimental work to determine the strength of the street-to-rooftop backhaul links and their ability to meet current and future SCB requirements. The results obtained showed that reliable multiple NLOS links can be achieved using device intelligence to guide radio signals along the propagation path. Furthermore, the PtMP architecture is found to be more energy efficient than the PtP architecture. The proposed architecture and algorithms offer a novel backhaul solution for outdoor urban small cells. Finally, this research shows that traditional techniques of addressing the demand for connectivity, which consisted of improving or evolving existing solutions, may nolonger be applicable in emerging communication technologies. There is therefore need to consider new ways of solving the emerging challenges
    • …
    corecore