1,380 research outputs found

    Syndrome-Based Encoding of Compressible Sources for M2M Communication

    Get PDF
    Data originating from many devices and sensors can be modeled as sparse signals. Hence, efficient compression techniques of such data are essential to reduce bandwidth and transmission power, especially for energy constrained devices within machine to machine communication scenarios. This paper provides accurate analysis of the operational distortion-rate function (ODR) for syndrome-based source encoders of noisy sparse sources. We derive the probability density function of error due to both quantization and pre- quantization noise for a type of mixed distributed source comprising Bernoulli and an arbitrary continuous distribution, e.g., Bernoulli- uniform sources. Then, we derive the ODR for two encoding schemes based on the syndromes of Reed-Solomon (RS) and Bose, Chaudhuri, and Hocquenghem (BCH) codes. The presented analysis allows designing a quantizer such that a target average distortion is achieved. As confirmed by numerical results, the closed-form expression for ODR perfectly coincides with the simulation. Also, the performance loss compared to an entropy based encoder is tolerable

    An MDL framework for sparse coding and dictionary learning

    Full text link
    The power of sparse signal modeling with learned over-complete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as under-fitting or over-fitting given sets of data, are still not well characterized in the literature. As a result, the success of sparse modeling depends on hand-tuning critical parameters for each data and application. This work aims at addressing this by providing a practical and objective characterization of sparse models by means of the Minimum Description Length (MDL) principle -- a well established information-theoretic approach to model selection in statistical inference. The resulting framework derives a family of efficient sparse coding and dictionary learning algorithms which, by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information to existing models, such as Markovian dependencies, or to define completely new problem formulations, including in the matrix analysis area, in a natural way. These virtues will be demonstrated with parameter-free algorithms for the classic image denoising and classification problems, and for low-rank matrix recovery in video applications

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation

    Full text link
    We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our framework can also be applied to general linear inverse problems where more measurements than in CS might be needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.Comment: 29 pages, 8 figure

    Stochastic approximation of score functions for Gaussian processes

    Full text link
    We discuss the statistical properties of a recently introduced unbiased stochastic approximation to the score equations for maximum likelihood calculation for Gaussian processes. Under certain conditions, including bounded condition number of the covariance matrix, the approach achieves O(n)O(n) storage and nearly O(n)O(n) computational effort per optimization step, where nn is the number of data sites. Here, we prove that if the condition number of the covariance matrix is bounded, then the approximate score equations are nearly optimal in a well-defined sense. Therefore, not only is the approximation efficient to compute, but it also has comparable statistical properties to the exact maximum likelihood estimates. We discuss a modification of the stochastic approximation in which design elements of the stochastic terms mimic patterns from a 2n2^n factorial design. We prove these designs are always at least as good as the unstructured design, and we demonstrate through simulation that they can produce a substantial improvement over random designs. Our findings are validated by numerical experiments on simulated data sets of up to 1 million observations. We apply the approach to fit a space-time model to over 80,000 observations of total column ozone contained in the latitude band 40∘40^{\circ}-50∘50^{\circ}N during April 2012.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS627 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Sampling Rate-Distortion Tradeoff for Sparsity Pattern Recovery in Compressed Sensing

    Full text link
    Recovery of the sparsity pattern (or support) of an unknown sparse vector from a limited number of noisy linear measurements is an important problem in compressed sensing. In the high-dimensional setting, it is known that recovery with a vanishing fraction of errors is impossible if the measurement rate and the per-sample signal-to-noise ratio (SNR) are finite constants, independent of the vector length. In this paper, it is shown that recovery with an arbitrarily small but constant fraction of errors is, however, possible, and that in some cases computationally simple estimators are near-optimal. Bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector for several different recovery algorithms. The tightness of the bounds, in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing information-theoretic necessary bounds. Near optimality is shown for a wide variety of practically motivated signal models
    • …
    corecore