1,852 research outputs found

    Accurate Object Detection with Deformable Shape Models Learnt from Images

    Get PDF
    International audienceWe present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and localize novel instances in the presence of intra-class variations, clutter, and scale changes. Like a shape matcher, it finds the accurate boundaries of the objects, rather than just their bounding-boxes. This is made possible by 1) a novel technique for learning a shape model of an object class given images of example instances; 2) the combination of Hough-style voting with a non-rigid point matching algorithm to localize the model in cluttered images. As demonstrated by an extensive evaluation, our method can localize object boundaries accurately, while needing no segmented examples for training (only bounding-boxes)

    A Survey on Joint Object Detection and Pose Estimation using Monocular Vision

    Get PDF
    In this survey we present a complete landscape of joint object detection and pose estimation methods that use monocular vision. Descriptions of traditional approaches that involve descriptors or models and various estimation methods have been provided. These descriptors or models include chordiograms, shape-aware deformable parts model, bag of boundaries, distance transform templates, natural 3D markers and facet features whereas the estimation methods include iterative clustering estimation, probabilistic networks and iterative genetic matching. Hybrid approaches that use handcrafted feature extraction followed by estimation by deep learning methods have been outlined. We have investigated and compared, wherever possible, pure deep learning based approaches (single stage and multi stage) for this problem. Comprehensive details of the various accuracy measures and metrics have been illustrated. For the purpose of giving a clear overview, the characteristics of relevant datasets are discussed. The trends that prevailed from the infancy of this problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and Pattern Recognition (CCVPR) 201

    Recovering 6D Object Pose: A Review and Multi-modal Analysis

    Full text link
    A large number of studies analyse object detection and pose estimation at visual level in 2D, discussing the effects of challenges such as occlusion, clutter, texture, etc., on the performances of the methods, which work in the context of RGB modality. Interpreting the depth data, the study in this paper presents thorough multi-modal analyses. It discusses the above-mentioned challenges for full 6D object pose estimation in RGB-D images comparing the performances of several 6D detectors in order to answer the following questions: What is the current position of the computer vision community for maintaining "automation" in robotic manipulation? What next steps should the community take for improving "autonomy" in robotics while handling objects? Our findings include: (i) reasonably accurate results are obtained on textured-objects at varying viewpoints with cluttered backgrounds. (ii) Heavy existence of occlusion and clutter severely affects the detectors, and similar-looking distractors is the biggest challenge in recovering instances' 6D. (iii) Template-based methods and random forest-based learning algorithms underlie object detection and 6D pose estimation. Recent paradigm is to learn deep discriminative feature representations and to adopt CNNs taking RGB images as input. (iv) Depending on the availability of large-scale 6D annotated depth datasets, feature representations can be learnt on these datasets, and then the learnt representations can be customized for the 6D problem

    PD2T: Person-specific Detection, Deformable Tracking

    Get PDF
    Face detection/alignment has reached a satisfactory state in static images captured under arbitrary conditions. Such methods typically perform (joint) fitting independently for each frame and are used in commercial applications; however in the majority of the real-world scenarios the dynamic scenes are of interest. Hence, we argue that generic fitting per frame is suboptimal (it discards the informative correlation of sequential frames) and propose to learn person-specific statistics from the video to improve the generic results. To that end, we introduce a meticulously studied pipeline, which we name PD\textsuperscript{2}T, that performs person-specific detection and landmark localisation. We carry out extensive experimentation with a diverse set of i) generic fitting results, ii) different objects (human faces, animal faces) that illustrate the powerful properties of our proposed pipeline and experimentally verify that PD\textsuperscript{2}T outperforms all the compared methods

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi
    • …
    corecore