22 research outputs found

    Height estimation from single aerial images using a deep ordinal regression network

    Full text link
    Understanding the 3D geometric structure of the Earth's surface has been an active research topic in photogrammetry and remote sensing community for decades, serving as an essential building block for various applications such as 3D digital city modeling, change detection, and city management. Previous researches have extensively studied the problem of height estimation from aerial images based on stereo or multi-view image matching. These methods require two or more images from different perspectives to reconstruct 3D coordinates with camera information provided. In this paper, we deal with the ambiguous and unsolved problem of height estimation from a single aerial image. Driven by the great success of deep learning, especially deep convolution neural networks (CNNs), some researches have proposed to estimate height information from a single aerial image by training a deep CNN model with large-scale annotated datasets. These methods treat height estimation as a regression problem and directly use an encoder-decoder network to regress the height values. In this paper, we proposed to divide height values into spacing-increasing intervals and transform the regression problem into an ordinal regression problem, using an ordinal loss for network training. To enable multi-scale feature extraction, we further incorporate an Atrous Spatial Pyramid Pooling (ASPP) module to extract features from multiple dilated convolution layers. After that, a post-processing technique is designed to transform the predicted height map of each patch into a seamless height map. Finally, we conduct extensive experiments on ISPRS Vaihingen and Potsdam datasets. Experimental results demonstrate significantly better performance of our method compared to the state-of-the-art methods.Comment: 5 pages, 3 figure

    Cityscapes 3D: Dataset and Benchmark for 9 DoF Vehicle Detection

    Full text link
    Detecting vehicles and representing their position and orientation in the three dimensional space is a key technology for autonomous driving. Recently, methods for 3D vehicle detection solely based on monocular RGB images gained popularity. In order to facilitate this task as well as to compare and drive state-of-the-art methods, several new datasets and benchmarks have been published. Ground truth annotations of vehicles are usually obtained using lidar point clouds, which often induces errors due to imperfect calibration or synchronization between both sensors. To this end, we propose Cityscapes 3D, extending the original Cityscapes dataset with 3D bounding box annotations for all types of vehicles. In contrast to existing datasets, our 3D annotations were labeled using stereo RGB images only and capture all nine degrees of freedom. This leads to a pixel-accurate reprojection in the RGB image and a higher range of annotations compared to lidar-based approaches. In order to ease multitask learning, we provide a pairing of 2D instance segments with 3D bounding boxes. In addition, we complement the Cityscapes benchmark suite with 3D vehicle detection based on the new annotations as well as metrics presented in this work. Dataset and benchmark are available online.Comment: 2020 "Scalability in Autonomous Driving" CVPR Worksho

    SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation

    Get PDF
    Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving. In case of monocular vision, successful methods have been mainly based on two ingredients: (i) a network generating 2D region proposals, (ii) a R-CNN structure predicting 3D object pose by utilizing the acquired regions of interest. We argue that the 2D detection network is redundant and introduces non-negligible noise for 3D detection. Hence, we propose a novel 3D object detection method, named SMOKE, in this paper that predicts a 3D bounding box for each detected object by combining a single keypoint estimate with regressed 3D variables. As a second contribution, we propose a multi-step disentangling approach for constructing the 3D bounding box, which significantly improves both training convergence and detection accuracy. In contrast to previous 3D detection techniques, our method does not require complicated pre/post-processing, extra data, and a refinement stage. Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset, giving the best state-of-the-art result on both 3D object detection and Bird's eye view evaluation. The code will be made publicly available.Comment: 8 pages, 6 figure

    AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware Robust Adversarial Training

    Full text link
    Monocular 3D object detection plays a pivotal role in the field of autonomous driving and numerous deep learning-based methods have made significant breakthroughs in this area. Despite the advancements in detection accuracy and efficiency, these models tend to fail when faced with such attacks, rendering them ineffective. Therefore, bolstering the adversarial robustness of 3D detection models has become a crucial issue that demands immediate attention and innovative solutions. To mitigate this issue, we propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D. Specifically, we first design an adversarial attack that iteratively degrades the 2D and 3D perception capabilities of 3D object detection models(IDP), serves as the foundation for our subsequent defense mechanism. In response to this attack, we propose an uncertainty-based residual learning method for adversarial training. Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks. We conducted extensive experiments on the KITTI 3D datasets, demonstrating that DART3D surpasses direct adversarial training (the most popular approach) under attacks in 3D object detection APR40AP_{R40} of car category for the Easy, Moderate, and Hard settings, with improvements of 4.415%, 4.112%, and 3.195%, respectively

    DeepCrashTest: Turning Dashcam Videos into Virtual Crash Tests for Automated Driving Systems

    Full text link
    The goal of this paper is to generate simulations with real-world collision scenarios for training and testing autonomous vehicles. We use numerous dashcam crash videos uploaded on the internet to extract valuable collision data and recreate the crash scenarios in a simulator. We tackle the problem of extracting 3D vehicle trajectories from videos recorded by an unknown and uncalibrated monocular camera source using a modular approach. A working architecture and demonstration videos along with the open-source implementation are provided with the paper.Comment: 8 pages, 5 figures, ICRA 2020, Trajectory Extraction, Trajectory Simulatio
    corecore