9 research outputs found

    A Centralized Framework for Smart Access Point Selection based on the Fittingness Factor

    Get PDF
    Abstract: This paper focuses on addressing the Access Point (AP) selection problem by relying on a centralized controller that provides a global view of the network. This approach follows the Software-Defined Networking (SDN) concept, which has long been considered in the literature as an innovative method to control management functionalities for wired networks and that is also now becoming a hot topic in the context of Wi-Fi networks. The proposed AP selection approach is based on a novel algorithm which relies on the Fittingness Factor (FF) concept, to maximize a function that reflects the suitability of the available spectrum resources to the application requirements. Specifically, this paper describes the development of a framework that implements the FF-based algorithm for smart AP selection in a centralized controller. The simulated performance comparison of this algorithm against a strategy that maximizes the achievable data rate considered in many papers in the literature, illustrates the important achievements that have been obtained in terms of saved bandwidth and users' satisfaction

    SARA – A Semantic Access Point Resource Allocation Service for Heterogenous Wireless Networks

    Get PDF
    In this paper, we present SARA, a Semantic Access point Resource Allocation service for heterogenous wireless networks with various wireless access technologies existing together. By automatically reasoning on the knowledge base of the full system provided by a knowledge based autonomic network management system - SEANET, SARA selects the access point providing the best quality of service among the different access technologies. Based on an ontology assisted knowledge based system SEANET, SARA can also adapt the access point selection strategy according to customer defined rules automatically. Results of our evaluation based on emulated networks with hybrid access technologies and various scales show that SARA is able to improve the channel condition, in terms of throughput, evidently. Comparisons with current AP selection algorithms demonstrate that SARA outperforms the existing AP selection algorithms. The overhead in terms of time expense is reasonable and is shown to be faster than traditional access point selection approaches

    A dynamic access point allocation algorithm for dense wireless LANs using potential game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks

    Get PDF
    This paper addresses the problem of Access Point (AP) selection in large Wi-Fi networks. Unlike current solutions that rely on Received Signal Strength (RSS) to determine the best AP that could serve a wireless user’s request, we propose a novel framework that considers the Quality of Service (QoS) requirements of the user’s data flow. The proposed framework relies on a function reflecting the suitability of a Wi-Fi AP to satisfy the QoS requirements of the data flow. The framework takes advantage of the flexibility and centralised nature of Software Defined Networking (SDN). A performance comparison of this algorithm developed through an SDN-based simulator shows significant achievements against other state of the art solutions in terms of provided QoS and improved wireless network capacity

    A Dynamic Access Point Allocation Algorithm for Dense Wireless LANs Using Potential Game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    Specification of Cooperative Access Points Functionalities version 1

    Get PDF
    The What to do With the Wi-Fi Wild West H2020 project (Wi-5) combines research and innovation to propose an architecture based on an integrated and coordinated set of smart Wi-Fi networking solutions. The resulting system will be able to efficiently reduce interference between neighbouring Access Points (APs) and provide optimised connectivity for new and emerging services. The project approach is expected to develop and incorporate a variety of different solutions, which will be made available through academic publications, in addition to other dissemination channels. The present document includes the specification of the first version of the Cooperative AP Functionalities, which are being defined within Work Package (WP) 4 of the Wi-5 project. In this deliverable after the Executive Summary and the literature review, the first version of the Cooperative Access Point Solutions are illustrated. In particular, a section with a general cooperative framework that jointly includes functionalities for an optimized AP channel assignment, Radio Resource Management (RRM) and smart AP allocation is presented. The optimized APs channel assignment enables an important improvement of the network performance in terms of SINR. Furthermore, the results analysed in this deliverable validate the flexibility and practicality of the proposed algorithm in different scenarios. The smart AP allocation solution introduces the innovative Fittingness Factor (FF) concept that efficiently matches the suitability of the available spectrum resource to the application requirements. Moreover, the basis required for a seamless mobility functionality in the framework is also included in the section. Next, a first assessment of the algorithms proposed in this deliverable is presented through the analysis of several performance results in a simulated environment. In detail, the AP channel assignment and the smart AP allocation algorithms are assessed and compared against other strategies found in the literature. Finally, a set of monitoring procedures to be conducted on the Wi-5 APs and on the Wi-5 controller are presented. These procedures will allow the correct deployment of the cooperative APs functionalities proposed in this deliverable. After summarising the main conclusions, the document ends with future work

    Specification of Cooperative Access Points Functionalities version 2

    Get PDF
    The What to do With the Wi-Fi Wild West H2020 project (Wi-5) combines research and innovation to propose an architecture based on an integrated and coordinated set of smart Wi-Fi networking solutions. The resulting system will be able to efficiently reduce interference between neighbouring Access Points (APs) and provide optimised connectivity for new and emerging services. The project approach is expected to develop and incorporate a variety of different solutions, which will be made available through academic publications, in addition to other dissemination channels. This deliverable presents the specification of the second version of the Cooperative AP Functionalities that are being designed in the context of Work Package (WP) 4 of the Wi-5 project. Specifically, we present a general cooperative framework that includes functionalities for a Radio Resource Management (RRM) algorithm, which provides channel assignment and transmit power adjustment strategies, an AP selection policy, and a solution for vertical handover. The RRM achieves an important improvement for network performance in terms of several parameters through the channel assignment approach, that can be further improved by including the transmit power adjustment. The AP selection solution extends the approach presented in deliverable D4.1 based on the Fittingness Factor (FF) concept, which is a parameter for efficiently matching the suitability of the available spectrum resource to the application requirements. Moreover, the preliminary details, which will allow us to extend AP selection towards vertical handover functionality including 3G/4G networks, are also presented. The assessment of the algorithms proposed in this deliverable is illustrated through the analysis of several performance results in a simulated environment against other strategies found in the literature. Finally, a set of monitoring capabilities implemented on the Wi-5 APs and on the Wi-5 controller are illustrated. These capabilities will enable the correct deployment of the cooperative APs functionalities proposed in this deliverable in realistic scenarios

    Final Specification of Cooperative Functionalities

    Get PDF
    This deliverable presents the specification of the final version of the Cooperative AP Functionalities that have been designed in the context of Work Package (WP) 4 of the Wi-5 project. In detail, we present a general cooperative framework that includes functionalities for a Radio Resource Management (RRM) algorithm, which provides channel assignment and transmit power adjustment strategies, an AP selection policy, which also provides horizontal handover, and a Radio Access Technology (RAT) selection solution for vertical handover. The RRM algorithm achieves an important improvement for network performance in terms of several parameters through the channel assignment approach and the transmit power adjustment. The AP selection solution extends the approach presented in deliverables D4.1 and D4.2 and is based on a centralised potential game, which optimises the distribution of the so-called Fittingness Factor (FF) parameter among the Wi-Fi users. Such a parameter efficiently matches the suitability of the available spectrum resource to the users’ application requirements. Moreover, the RAT selection solution extends the AP selection algorithm towards vertical handover functionality including 3G/4G networks. The assessment of the newest algorithms developed in the context of WP4 is illustrated in this deliverable through the analysis of several performance results in a simulated environment against other strategies found in the literature. Finally, the set of smart AP functionalities developed in the context of WP3, implemented on the Wi5 APs and on the Wi-5 controller, and their use in the proposed algorithms are illustrated. Specifically, this deliverable describes how these functionalities can enable the correct deployment of the proposed cooperative AP solutions in realistic scenarios. Therefore, the main novel contributions of this deliverable are i) the strengthening of the AP selection algorithm, ii) the design and assessment of a new algorithm for vertical handover and iii) the presentation of the finalised integration of the cooperative AP functionalities of the Wi-5 system
    corecore