2,481 research outputs found

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Gotham Testbed: a Reproducible IoT Testbed for Security Experiments and Dataset Generation

    Full text link
    The scarcity of available Internet of Things (IoT) datasets remains a limiting factor in developing machine learning based security systems. Static datasets get outdated due to evolving IoT threat landscape. Meanwhile, the testbeds used to generate them are rarely published. This paper presents the Gotham testbed, a reproducible and flexible network security testbed, implemented as a middleware over the GNS3 emulator, that is extendable to accommodate new emulated devices, services or attackers. The testbed is used to build an IoT scenario composed of 100 emulated devices communicating via MQTT, CoAP and RTSP protocols in a topology composed of 30 switches and 10 routers. The scenario presents three threat actors, including the entire Mirai botnet lifecycle and additional red-teaming tools performing DoS, scanning and various attacks targeting the MQTT and CoAP protocols. The generated network traffic and application logs can be used to capture datasets containing legitimate and attacking traces. We hope that researchers can leverage the testbed and adapt it to include other types of devices and state-of-the-art attacks to generate new datasets that reflect the current threat landscape and IoT protocols. The source code to reproduce the scenario is publicly accessible

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    A Federated Filtering Framework for Internet of Medical Things

    Full text link
    Based on the dominant paradigm, all the wearable IoT devices used in the healthcare sector also known as the internet of medical things (IoMT) are resource constrained in power and computational capabilities. The IoMT devices are continuously pushing their readings to the remote cloud servers for real-time data analytics, that causes faster drainage of the device battery. Moreover, other demerits of continuous centralizing of data include exposed privacy and high latency. This paper presents a novel Federated Filtering Framework for IoMT devices which is based on the prediction of data at the central fog server using shared models provided by the local IoMT devices. The fog server performs model averaging to predict the aggregated data matrix and also computes filter parameters for local IoMT devices. Two significant theoretical contributions of this paper are the global tolerable perturbation error (TolF{To{l_F}}) and the local filtering parameter (δ\delta); where the former controls the decision-making accuracy due to eigenvalue perturbation and the later balances the tradeoff between the communication overhead and perturbation error of the aggregated data matrix (predicted matrix) at the fog server. Experimental evaluation based on real healthcare data demonstrates that the proposed scheme saves upto 95\% of the communication cost while maintaining reasonable data privacy and low latency.Comment: 6 pages, 6 Figures, accepted for oral presentation in IEEE ICC 2019, Internet of Things, Federated Learning and Perturbation theor
    corecore