4 research outputs found

    FPC: A New Approach to Firewall Policies Compression

    Get PDF
    Firewalls are crucial elements that enhance network security by examining the field values of every packet and deciding whether to accept or discard a packet according to the firewall policies. With the development of networks, the number of rules in firewalls has rapidly increased, consequently degrading network performance. In addition, because most real-life firewalls have been plagued with policy conflicts, malicious traffics can be allowed or legitimate traffics can be blocked. Moreover, because of the complexity of the firewall policies, it is very important to reduce the number of rules in a firewall while keeping the rule semantics unchanged and the target firewall rules conflict-free. In this study, we make three major contributions. First, we present a new approach in which a geometric model, multidimensional rectilinear polygon, is constructed for the firewall rules compression problem. Second, we propose a new scheme, Firewall Policies Compression (FPC), to compress the multidimensional firewall rules based on this geometric model. Third, we conducted extensive experiments to evaluate the performance of the proposed method. The experimental results demonstrate that the FPC method outperforms the existing approaches, in terms of compression ratio and efficiency while maintaining conflict-free firewall rules

    FPC: A New Approach to Firewall Policies Compression

    Get PDF
    Firewalls are crucial elements that enhance network security by examining the field values of every packet and deciding whether to accept or discard a packet according to the firewall policies. With the development of networks, the number of rules in firewalls has rapidly increased, consequently degrading network performance. In addition, because most real-life firewalls have been plagued with policy conflicts, malicious traffics can be allowed or legitimate traffics can be blocked. Moreover, because of the complexity of the firewall policies, it is very important to reduce the number of rules in a firewall while keeping the rule semantics unchanged and the target firewall rules conflict-free. In this study, we make three major contributions. First, we present a new approach in which a geometric model, multidimensional rectilinear polygon, is constructed for the firewall rules compression problem. Second, we propose a new scheme, Firewall Policies Compression (FPC), to compress the multidimensional firewall rules based on this geometric model. Third, we conducted extensive experiments to evaluate the performance of the proposed method. The experimental results demonstrate that the FPC method outperforms the existing approaches, in terms of compression ratio and efficiency while maintaining conflict-free firewall rules

    Trusted reasoning-role-based access control for cloud computing environment

    Get PDF
    Cloud computing has become the new standard in the fast-growing industry of information technology. This poses new challenges to the existing access control models, as the new computing paradigm is highly-distributed and multi-tenancy. The existing access control models are not strong enough due to unavailability of strong multiple relationships between user and resources. In addition, monitoring activities of users to protect the cloud resources is weak. In these contexts, malicious user must be identified for the protection of sensitive data and to limit the access of the user to the resources. This research developed an enhanced access control model for cloud computing, namely Trusted Reasoning-Role-Based Access Control for Cloud Computing Environment (TR2BAC) model. The model consists of four components. The first component is a dimensional domain for strong multiple relations between resources and user management, whereas the second component is reason-based access mechanism to limit users access based on defined reasoning principle. The third component is the trust module that identifies trusted/malicious users, and the fourth component ensures secure data access that classifies and labels the data according to the level of its sensitivity. The resources are then secured accordingly. Simulation results revealed that the performance of the proposed model improved in comparison to the existing state of the art techniques in terms of throughput by 25% and Permission Grants results by 35%. In terms of user authorization, the access time improved by 95% of the total access time which is about 7.5 seconds. In conclusion, this research has developed an enhanced access control model for cloud computing environment that can be used to protect the privacy of users as well as cloud resources from inside and outside attacks

    Cloud security - An approach with modern cryptographic solutions

    Get PDF
    The term “cloud computing” has been in the spotlights of IT specialists due to its potential of transforming computer industry. Unfortunately, there are still some challenges to be resolved and the security aspects in the cloud based computing environment remain at the core of interest. The goal of our work is to identify the main security issues of cloud computing and to present approaches to secure clouds. Our research also focuses on data and storage security layers. As a result, we found out that the protection of cloud data lies in cloud cryptography. Thus, this thesis reviews the new cryptographic techniques used to protect and process encrypted data in a remote cloud storage. In this thesis we are proposing a cryptographic scheme which uses fingerprint scanning for user authentication and AES technique of 128/192/256 bit cipher key for encryption and decryption of user's data. AES provides higher data security compared to other encryption techniques like DES and Blowfish. Our scheme is used in DropBoxCrypt application. DropBoxCrypt is a data encryption-decryption application developed for Android mobile devices which can be used for browsing, exporting and opening encrypted data stored in cloud storage
    corecore