922 research outputs found

    Granular-ball computing: an efficient, robust, and interpretable adaptive multi-granularity representation and computation method

    Full text link
    Human cognition operates on a "Global-first" cognitive mechanism, prioritizing information processing based on coarse-grained details. This mechanism inherently possesses an adaptive multi-granularity description capacity, resulting in computational traits such as efficiency, robustness, and interpretability. The analysis pattern reliance on the finest granularity and single-granularity makes most existing computational methods less efficient, robust, and interpretable, which is an important reason for the current lack of interpretability in neural networks. Multi-granularity granular-ball computing employs granular-balls of varying sizes to daptively represent and envelop the sample space, facilitating learning based on these granular-balls. Given that the number of coarse-grained "granular-balls" is fewer than sample points, granular-ball computing proves more efficient. Moreover, the inherent coarse-grained nature of granular-balls reduces susceptibility to fine-grained sample disturbances, enhancing robustness. The multi-granularity construct of granular-balls generates topological structures and coarse-grained descriptions, naturally augmenting interpretability. Granular-ball computing has successfully ventured into diverse AI domains, fostering the development of innovative theoretical methods, including granular-ball classifiers, clustering techniques, neural networks, rough sets, and evolutionary computing. This has notably ameliorated the efficiency, noise robustness, and interpretability of traditional methods. Overall, granular-ball computing is a rare and innovative theoretical approach in AI that can adaptively and simultaneously enhance efficiency, robustness, and interpretability. This article delves into the main application landscapes for granular-ball computing, aiming to equip future researchers with references and insights to refine and expand this promising theory

    A Survey on Feature Selection Algorithms

    Get PDF
    One major component of machine learning is feature analysis which comprises of mainly two processes: feature selection and feature extraction. Due to its applications in several areas including data mining, soft computing and big data analysis, feature selection has got a reasonable importance. This paper presents an introductory concept of feature selection with various inherent approaches. The paper surveys historic developments reported in feature selection with supervised and unsupervised methods. The recent developments with the state of the art in the on-going feature selection algorithms have also been summarized in the paper including their hybridizations. DOI: 10.17762/ijritcc2321-8169.16043

    GraphVid: It Only Takes a Few Nodes to Understand a Video

    Full text link
    We propose a concise representation of videos that encode perceptually meaningful features into graphs. With this representation, we aim to leverage the large amount of redundancies in videos and save computations. First, we construct superpixel-based graph representations of videos by considering superpixels as graph nodes and create spatial and temporal connections between adjacent superpixels. Then, we leverage Graph Convolutional Networks to process this representation and predict the desired output. As a result, we are able to train models with much fewer parameters, which translates into short training periods and a reduction in computation resource requirements. A comprehensive experimental study on the publicly available datasets Kinetics-400 and Charades shows that the proposed method is highly cost-effective and uses limited commodity hardware during training and inference. It reduces the computational requirements 10-fold while achieving results that are comparable to state-of-the-art methods. We believe that the proposed approach is a promising direction that could open the door to solving video understanding more efficiently and enable more resource limited users to thrive in this research field.Comment: Accepted to ECCV2022 (Oral

    gSuite: A Flexible and Framework Independent Benchmark Suite for Graph Neural Network Inference on GPUs

    Full text link
    As the interest to Graph Neural Networks (GNNs) is growing, the importance of benchmarking and performance characterization studies of GNNs is increasing. So far, we have seen many studies that investigate and present the performance and computational efficiency of GNNs. However, the work done so far has been carried out using a few high-level GNN frameworks. Although these frameworks provide ease of use, they contain too many dependencies to other existing libraries. The layers of implementation details and the dependencies complicate the performance analysis of GNN models that are built on top of these frameworks, especially while using architectural simulators. Furthermore, different approaches on GNN computation are generally overlooked in prior characterization studies, and merely one of the common computational models is evaluated. Based on these shortcomings and needs that we observed, we developed a benchmark suite that is framework independent, supporting versatile computational models, easily configurable and can be used with architectural simulators without additional effort. Our benchmark suite, which we call gSuite, makes use of only hardware vendor's libraries and therefore it is independent of any other frameworks. gSuite enables performing detailed performance characterization studies on GNN Inference using both contemporary GPU profilers and architectural GPU simulators. To illustrate the benefits of our new benchmark suite, we perform a detailed characterization study with a set of well-known GNN models with various datasets; running gSuite both on a real GPU card and a timing-detailed GPU simulator. We also implicate the effect of computational models on performance. We use several evaluation metrics to rigorously measure the performance of GNN computation.Comment: IEEE International Symposium on Workload Characterization (IISWC) 202

    An Efficient Anomaly Detection Through Optimized Navigation Using Dlvq-Cdma And H-Dso In Healthcare Iot Environment

    Get PDF
    An Anomaly detection (AD) framework intends to discover irregular data and also unusable activities in a system. The abnormality in the healthcare information is picked up by the AD in the healthcare system and then, the outcome is updated for the authority to evaluate the data. Numerous researchers have developed an AD method that has the disadvantage of data loss issues and complexity in computation. An enhanced AD framework utilizing Deep Learning Vector Quantization-Correlation Distance Mayfly Algorithm (DLVQ-CDMA) and Hyper-sphere Dolphin Swarm Optimization (H-DSO) methodology is presented in this work to overcome these disadvantages. By aid of the Internet of Things (IoT)-connected systems, proffered model gathers information about the patient and as well forwards the information to patient's health care application. Information from health care application is then sent via the optimal path by utilizing the H-DSO method. The data is uploaded to the cloud server later and then, it is recovered and provided to the AD system. The data is then pre-processed in an AD system. After extricating the features, the feature reduction is performed by employing the Entropy-Generalized Discriminant Analysis(E-GDA) scheme. Subsequently, the DLVQ-CDMA algorithm is utilized with the required features. Information is formerly categorized as usual data or irregularity data. data, which is attacked is stored in the log file and the normal data will undergo further evaluation for the identification of the presence of disease or disorder. After evaluation, the outcome is communicated to the patient. The experiential analysis specifies that the proffered DLVQ-CDMA methodology executes better than the prevailing methodologies

    A Survey of Graph Pre-processing Methods: From Algorithmic to Hardware Perspectives

    Full text link
    Graph-related applications have experienced significant growth in academia and industry, driven by the powerful representation capabilities of graph. However, efficiently executing these applications faces various challenges, such as load imbalance, random memory access, etc. To address these challenges, researchers have proposed various acceleration systems, including software frameworks and hardware accelerators, all of which incorporate graph pre-processing (GPP). GPP serves as a preparatory step before the formal execution of applications, involving techniques such as sampling, reorder, etc. However, GPP execution often remains overlooked, as the primary focus is directed towards enhancing graph applications themselves. This oversight is concerning, especially considering the explosive growth of real-world graph data, where GPP becomes essential and even dominates system running overhead. Furthermore, GPP methods exhibit significant variations across devices and applications due to high customization. Unfortunately, no comprehensive work systematically summarizes GPP. To address this gap and foster a better understanding of GPP, we present a comprehensive survey dedicated to this area. We propose a double-level taxonomy of GPP, considering both algorithmic and hardware perspectives. Through listing relavent works, we illustrate our taxonomy and conduct a thorough analysis and summary of diverse GPP techniques. Lastly, we discuss challenges in GPP and potential future directions
    corecore